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Abstract: Detecting anomalies in time series data is important in a variety of fields, including system
monitoring, healthcare and cybersecurity. While the abundance of available methods makes it difficult
to choose the most appropriate method for a given application, each method has its strengths in
detecting certain types of anomalies. In this study, we compare six unsupervised anomaly detection
methods of varying complexity to determine whether more complex methods generally perform
better and if certain methods are better suited to certain types of anomalies. We evaluated the methods
using the UCR anomaly archive, a recent benchmark dataset for anomaly detection. We analyzed
the results on a dataset and anomaly-type level after adjusting the necessary hyperparameters for
each method. Additionally, we assessed the ability of each method to incorporate prior knowledge
about anomalies and examined the differences between point-wise and sequence-wise features. Our
experiments show that classical machine learning methods generally outperform deep learning
methods across a range of anomaly types.

Keywords: anomaly detection; time series; machine learning; deep learning; benchmark

1. Introduction

The detection of anomalies, or observations that significantly deviate from what is con-
sidered normal [1], in time series data is essential in various fields, including healthcare [2],
cybersecurity [3,4], industry [5] and robotics [6]. Anomaly detection is a notoriously chal-
lenging task, as the definition of what is considered anomalous can vary based on the
context or application [7]. Moreover, the absence of labeled training data for non-academic
problems often precludes the use of supervised machine-learning techniques. Anomaly
detection in data streams, which requires rapid results while aiming to detect anomalies
accurately and efficiently, is frequently necessary. It is important to minimize false-positive
detections to prevent alarm fatigue, which can result in a serious problem being overlooked
due to excessive false alarms [7]. It is also necessary to choose the appropriate method
based on the application and, often, domain knowledge, as the existence of a universal
anomaly detection method is a myth [8]. Choosing the appropriate method from the
plethora of available options can be a challenge in itself, as different methods have different
strengths in detecting certain types of anomalies. The numerous available methods can
be categorized using various criteria, such as the underlying probabilistic, classification,
or reconstruction-based model [1], the type of input data (univariate or multivariate), the
need for labeled training data, or the ability to process data streams.

In this work, we compare six unsupervised anomaly detection methods with varying
complexities. Three of these methods are classical machine-learning techniques (we refer to
these methods as classical methods) while the remaining three are based on deep learning.
Our central questions in this comparison are:

1. “Is it worthwhile to sacrifice the interpretability of classical methods for potentially
superior performance of deep learning methods?”
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2. “What different types of anomalies are the methods capable of detecting?”

To address these questions, we compare the classical methods of Robust Random
Cut Forest (RRCF) [9], Maximally Divergent Intervals (MDI) [10] and MERLIN [11] to
the deep learning methods of Autoencoder (AE), Graph Augmented Normalizing Flows
(GANF) [12], and Transformer Networks for Anomaly Detection (TranAD) [13]. We evaluate
these methods on the UCR Anomaly Archive [14], a new benchmark dataset for time series
anomaly detection. This archive consists of 250 univariate time series from four domains:
human medicine, industry, biology and meteorology. To ensure a fair comparison, we
carefully design our experimental setup and perform intensive hyperparameter tuning
for applicable methods. To the best of our knowledge, this is the first work to conduct an
experimental comparison of classical and deep-learning methods for anomaly detection in
time series. Our key contributions are:

• We conduct a comprehensive comparison of six state-of-the-art anomaly detection
methods for time series data using the UCR Anomaly Archive benchmark dataset.
Our comparison is carried out in a well-defined and fair benchmark environment.

• We enhance the UCR Anomaly Archive by annotating it with 16 distinct anomaly
types, providing a more nuanced and informative benchmark.

• We address two crucial questions in the field of anomaly detection: (1) whether the
superior performance of deep-learning methods justifies the loss of interpretability
of traditional methods and (2) the similarities and differences between the analyzed
methods in terms of detecting different anomaly types.

• We examine the impact of subsequence length on the performance of the MDI and
MERLIN methods, and compare point-wise to subsequence-wise features for the
RRCF method.

The remainder of this paper is organized as follows: after providing an introduction
to time series data and different types of anomalies in Sections 1.1 and 1.2, respectively, we
present related work in Section 1.3. In Section 2.1, we present the six anomaly detection
methods, followed by a description of the UCR Anomaly Archive dataset in Section 2.2
and the experimental setup in Section 2.3. The results of our experiments are presented in
Section 3 and discussed in Section 4. Finally, we summarize our findings and provide an
outlook on future work in Section 5

1.1. Time Series Data

Time series are sequential data that are naturally ordered by time. We distinguish
regular and irregular time series depending on whether or not the observations are made
at equidistant intervals. We define a time series as an ordered set of observations based
on [11]:

Definition 1. The time series T with length n ∈ N is defined as the set of pairs
T = {(ti, pi)|ti ≤ ti+1, 0 ≤ i ≤ n} with pi ∈ Rd being the data points with d behavioral at-
tributes and ti ∈ N, i ≤ n the timestamps to which a certain data point refers. For d = 1, T is
called univariate, and for d > 1, T is called multivariate.

Time series can be described using different characteristics, such as stationarity, which
refers to a constant mean, variance and auto-correlation structure, seasonality describing
periodically reoccurring behavior, or sampling rate the frequency in which observations are
made [7]. For an in-depth analysis of these characteristics, we refer to [7]. As time series
are usually not analyzed en bloc, we define a subsequence as a contiguous subset of the
time series:

Definition 2. The subsequence Sa,b ⊆ X of the times series X , with length L = b− a > 0 is
given by Sa,b := {(ti, pi)|0 ≤ a ≤ i ≤ b ≤ n}. For simplicity, we will often omit the indices and
refer to an arbitrary subsequence as S.
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1.2. Anomalies

There are three main types of anomalies distinguished in the literature: point anoma-
lies, collective anomalies and contextual anomalies [1,15–18]. Point anomalies are indi-
vidual data points (ti, pi) ∈ T that deviate significantly from all other instances, such
as a fraudulent transaction among legal finance transactions [1]. Collective anomalies
refer to whole subsequences S̃a,b ⊂ T being anomalous, while the individual data points
(ti, pi) ∈ S̃a,b would not be considered a point anomaly [16]. For example, supraventricu-
lar premature beats in an electrocardiogram (ECG) are examples of collective anomalies.
Contextual anomalies only appear anomalous depending on specific context variables.
For instance, while an outside air-temperature measurement of 28 ◦C during August is
considered normal in Panama, it would be anomalous in Antarctica. In this work, we
extend this classification to 16 classes by dividing the class of collective anomalies into
different subclasses, such as “frequency change” or “time shift”, which are described in
Section 2.2.2.

1.3. Related Work

While many survey and review papers on anomaly detection are available [15,17–22]
there are only a few works that have compared different methods experimentally.

Freeman et al. [7] conduct an experimental comparison of twelve anomaly detection
methods, including Seasonal AutoRegressive Integrated Moving Average with exogenous
variables (SARIMAX), Generalized Linear Model, Facebook Prophet [23], Matrix Profile [24],
or Donut [25]. The comparison is made using a dataset compiled mainly from the Numenta
benchmark [26] with a focus on different time series characteristics, such as seasonality and
trend. They use the Youden Index [27] to determine a threshold for classifying anomaly
scores and assess the quality of the analyzed methods using AUC ROC, Windowed-F1 and
the NAB Score, which is the metric used in the Numenta benchmark.

Graabæk et al. [28] compare 15 anomaly detection methods in the context of collab-
orative robots. The analyzed methods are categorized as instance-based methods, such as
k-Nearest-Neighbors and Local Outlier Factor, and explicit generalization models, such as
Principal Component Analysis, One-Class Support Vector Machine, or Autoencoder. They
compare these methods on a dataset collected from different tasks performed by a robotic
arm by using AUC ROC and Area under Precision-Recall Curve as quality measures.

Ruff et al. [1] provide a comprehensive review of classical and deep-learning methods
for anomaly detection. They group the presented methods into the three main classes:
Density Estimation and Probabilistic Models, One Class Classifications and Reconstruction Models,
and present various classical and deep-learning methods from each category. They also
give a unifying view of the anomaly detection problem by identifying specific anomaly
detection modeling components to characterize the presented methods and exemplify the
modeling and evaluation process on two real-world examples.

2. Materials and Methods
2.1. Analyzed Methods

To perform our comparison, we selected three deep-learning and three classical
machine-learning methods for unsupervised anomaly detection. The selection of these
methods was based on various factors, including simplicity, interpretability, applicability to
data streams and the existence of useful features such as the dependency graph for GANF.
In the following section, we will introduce the selected methods, starting with the classical
ones. One way to categorize anomaly detection methods is based on their suitability for
handling data streams, which we will refer to as “online” anomaly detection, as opposed to
“offline” anomaly detection carried out on data batches. A summary of the properties of the
compared methods can be found in Table 1.
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Table 1. Overview of the properties of the anomaly detection methods considered in this comparison.

Mechanism Class Online/Offline Training Multivariate Anomaly Score

RRCF Isolation Forest Classical Online 7 3
Collusive
Displacement

MDI Density Estimation Classical Offline 7 3 (KL/JS) Divergence
MERLIN Discord Discovery Classical Offline 7 7 Discord Distance
AE Reconstruction Deep learning Offline training

Online inference
3 3 Reconstruction Loss

GANF Density Estimation Deep learning Offline training
Online inference

3 3 Density

TranAD Reconstruction Deep learning Offline training
Online inference

3 3 Reconstruction Loss

2.1.1. Robust Random Cut Forest (RRCF)

The Robust Random Cut Forest (RRCF) [9] is a modification of the well-known Iso-
lation Forest [29] methods, which extends the approach to data streams. Both methods
work by isolating individual points from the rest of the data by recursively partitioning
the dataset. This process can be represented by a binary tree structure, where each cut
is represented by a pair of branches from the same node. The average path length can
then be used as an anomaly score, as shorter paths indicate that a point is more likely to
be anomalous [29]. One key difference between RRCF and Isolation Forest is that RRCF
selects the next dimension to cut, with a probability proportional to the range of values in
that dimension, rather than selecting it uniformly at random. This modification is meant to
avoid cutting irrelevant dimensions and reduce the number of false positives, as well as
to maintain a good recall [9]. Due to its anomaly scoring function Collusive Displacement
RRCF is also robust to the presence of duplicates or near-duplicates which could otherwise
lead to outlier masking [30]. Displacement refers to the classification of points as outliers, if
they significantly decrease the model complexity when removed from the tree. Collusive
Displacement accounts for duplicates or near-duplicates by removing a subset of “colluders”
C alongside the point of interest x. It is defined as the expected change in the depth of
points in a tree when removing a set C ∪ {x}. For an exact definition of the Collusive Dis-
placement scoring function, please refer to [9]. As RRCF works by isolating single points, one
would expect its strength to lie in finding point anomalies. For the detection of anomalous
subsequences, an additional preprocessing step for constructing window-based features
could be considered and is analyzed in Section 3.4. We selected RRCF mainly due to its
simplicity and comprehensibility.

2.1.2. Maximally Divergent Intervals (MDI)

Maximally Divergent Intervals (MDI) [10] is a density-based method for offline
anomaly detection in multivariate, spatiotemporal data. In this work, we focus on purely
temporal data and provide the definitions for this case only. For the original definitions
including spatial attributes, please refer to [10]. Given a multivariate time series T , MDI
detects anomalous subsequences by comparing the probability density pS of a subsequence
Sa,b ⊆ T to the density pΩ of the remaining part of the time series Ω(S) := T \ Sa,b for all
subsequences. The distributions are modeled using Kernel Density Estimation or Multivariate
Gaussians. To measure the degree of deviation D(pS, pΩ) between pS and pΩ, an unbiased
version of the Kullback–Leibler divergence is used. The most anomalous subsequence S̃ is
found by solving the underlying optimization problem [10]:

S̃ := arg max
S⊆T

D(pS, pΩ(S))

MDI locates this most anomalous subsequence S̃ by scanning all subsequences S ⊆ T
with a length between Lmin and Lmax and estimates the divergence D(pS, pΩ(S), which
is then used as the anomaly score. The parameters Lmin and Lmax need to be defined in
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advance. The top-k anomalous subsequences are selected by ranking the subsequences by
their anomaly score and selecting the top-k subsequences. To accommodate the application
to large-scale data, an interval proposal technique based on Hotelling’s T2 method [31]
is employed, which selects interesting subsequences based on point-wise anomaly scores
instead of performing full scans over the entire time series. This preselection method is
motivated by the fact that most subsequences are uninteresting for detecting anomalies
as these are rare by definition [10]. We selected MDI mainly due to its easily interpretable
approach.

2.1.3. MERLIN

MERLIN [11] is a method for offline anomaly detection based on discord discovery:
given a subsequence S with length L starting at timestamp p, a matching subsequence M
starting at timestamp q is called a non-self match to S if |p− q| ≥ L [11]. The discord S̃ of
a time series T is defined as the subsequence with the largest distance d(S̃, MS̃) from its
nearest non-self match MS̃, where d(·, ·) is the z-normalized (zero mean and unit variance)
Euclidean distance. MERLIN is based on the discord discovery algorithm from [32]. A key
factor in the success and efficiency of the algorithm is the selection of the hyperparameter r.
This parameter should be chosen to be slightly less than the discord distance, d(S̃, MS̃). If r
is too large, the algorithm will fail, while if it is too small, the runtime will be excessively
long. To address this challenge, MERLIN provides a structured search procedure for
determining an appropriate value for r by leveraging the observation that good values of r
for subsequences of length L are likely to be similar to good values of r for subsequences
of length L− 1 [11]. The maximum value of r for subsequences of length L is given by
rmax(L) = 2

√
L [33]. To find an appropriate value for r, the algorithm begins by setting

r = rmax(Lmin), where Lmin is the smallest subsequence length being considered, and then
halving r until the first discord is returned. For subsequences of other lengths Lmin, . . . , Lmax,
the previously determined values of r can be used. We selected MERLIN as it is the method
provided with the UCR anomaly archive dataset, which is the benchmark dataset for our
study and will be introduced in Section 2.2.

2.1.4. Autoencoder (AE)

Autoencoders, introduced in [34], are neural networks designed for dimensionality
reduction that consists of an encoder network f : Rn → Rl and a decoder network
g : Rl → Rn, where p, n ∈ N and l < n. These networks are trained to reconstruct their
input by learning a latent representation. The autoencoder problem can be formalized
according to [35] as:

arg min
f ,g

E[∆(x, g( f (x))]

with x ∈ X being the input data, ∆ the reconstruction loss, i.e., usually the L2
2 error function

and E[·] the expectation over its argument [35,36]. In the context of unsupervised anomaly
detection in time series data, the autoencoder learns a normal profile of the time series
T and detects anomalous input sequences S̃ with a high reconstruction error. Figure 1
illustrates this approach.

In our experiments, we used a dense autoencoder with two hidden layers in the
encoder and decoder, which have each a doubled number of neurons of the latent space
and ReLU activations as non-linearities. We included the autoencoder as a basic deep-
learning model in this study.
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Figure 1. Visualization of a dense autoencoder model for time series anomaly detection, producing a
high reconstruction error ∆(S, g( f (S̃)) when presented with the anomalous subsequence S̃. Dense
refers to the encoder and decoder networks being fully connected.

2.1.5. Graph Augmented Normalizing Flows (GANF)

GANF [12] is an anomaly detection method for multivariate time series that uses
normalizing flows for density estimation. Normalizing flows are generative models f :
Rd → Rd that utilize a series of invertible and differentiable transformations to normalize
complex data distributions to “base” distributions, whose densities are typically easy to
evaluate (e.g., isotropic Gaussians) [12]. In addition to modeling the density of the time
series using a normalizing flow, GANF incorporates a Bayesian Network to model the
causal relationships among multiple multivariate time series X = (T1, . . . , Tm). Given a
training set D = {X i}i = 1|D| of multiple time series, GANF aims to learn the adjacency
matrix A of the Bayesian Network and, simultaneously, the graph-augmented normalizing
flowF : (X , A)→ Z , whereZ is a random variable with a “simple” (base) distribution [12].
Once F is learned, the estimated density p(X ) can be evaluated to identify anomalies in
low-density regions of the base distribution. The dependency encoder of the model consists
of a recurrent neural network to summarize the time series up to a given time step t and
a graph convolution layer to learn a dependency representation, which is then used to
condition a normalizing flow f . For more information on the architectural details of GANF,
please see [12]. As anomalies are rare by definition, it is typically assumed that their
densities are low, and thus the estimated densities can be used as an anomaly score [12]. We
included GANF as a deep-learning variant of a density-estimation-based anomaly detection
method, given its ability to learn dependencies between multiple time series, although this
feature is not used in the context of this comparison.

2.1.6. Transformer Network for Anomaly Detection (TranAD)

TranAD [13] is an anomaly detection method based on the Transformer model [37],
which learns to reconstruct an input by applying several attention-based transformations.
The model proposed by Tuli et al. [13] uses two-phase training. In the first phase, the model
learns an approximate reconstruction of the whole time series T to capture long-term
trends and uses the deviation from the true time series as a focus score. In phase two, the
focus score is used to find those subsequences where the deviation in phase one is high.
Similar to other encoder–decoder models, the reconstruction loss is used as the anomaly
score. We included TranAD, as it was one of the most recent publications by the time of its
selection.

2.2. Benchmark Dataset: UCR Anomaly Archive

The dataset used in this study is the UCR Anomaly Archive [14,38], which consists of 250
univariate time series from various fields, including human medicine, biology, meteorology
and industry. The time series in this dataset include both natural and artificial anomalies,
with the majority being artificial. This allows for a more detailed analysis based on the type
of anomaly injection. The UCR Anomaly Archive was first used in an anomaly detection
contest preceding the ACM SIGKDD conference in 2021 and was published by Wu and
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Keogh [14] as an alternative to commonly used benchmark datasets such as Yahoo S5 [39],
Numenta [26] or NASA [40], which have been criticized for having trivial anomalies,
unrealistic anomaly densities, mislabeled ground truth and being “run-to-failure biased”.
This term refers to anomalies occurring at the end of a time series due to the recording
being stopped after the anomaly (or failure) occurred.

Each time series in the UCR Anomaly Archive contains a single, sometimes subtle
anomaly after a certain time stamp, with the data before that time stamp being considered
normal. As we evaluate the methods described in Section 2.1 in the unsupervised setting,
we do not use this label. The time series in the UCR Anomaly Archive have lengths ranging
from 6674 to 900,000 data points and anomalies with lengths between 1 and 1701 data
points, with a maximum anomaly pollution of 4.9% per time series.

2.2.1. Included Time Series

The time series in the UCR Anomaly Archive can be classified into 12 types based
on the domain they originate from: human medicine, meteorology, biology and industry.
Figure 2a shows the distribution of time series types in the dataset.
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Figure 2. (a) Histogram of time series types included in the UCR Anomaly Archive. The color
indicates the domain the time series originates from. (b) Histogram of anomaly types present in the
UCR Anomaly Archive.

The distribution is highly imbalanced, with approximately 64% of the time series
coming from human medicine applications, 22% from biology, 9% from industry and
5% being air-temperature measurements. Within a single type of time series (e.g., ECG),
the time series are not unique, but differ in terms of injected anomalies or modifications
to the original time series, such as the addition of Gaussian noise or baseline wander.
Baseline wander, a low-frequency artifact commonly found in ECG caused by factors such
as breathing or subject movement, refers to slow changes in the signal baseline [41].

2.2.2. Anomaly Types

To evaluate the abilities of the six anomaly detection methods to detect different types
of anomalies, we annotated each time series with the type of injected anomaly. We used the
supplemental material provided with the UCR Anomaly Archive dataset [42] to obtain this
information. The distribution of anomaly types is shown in Figure 2b. A list of explanations
and examples for each anomaly type can be found in Appendix A.1.
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2.3. Experimental Setup

For our experiments, we implemented the benchmark pipeline described in Section 2.3.1
in Python. The anomaly detection methods were either integrated from their publicly
available GitHub repositories (RRCF: https://github.com/kLabUM/rrcf (accessed on
18 January 2023), MDI: https://github.com/cvjena/libmaxdiv (accessed on 18 January
2023), GANF: https://github.com/EnyanDai/GANF (accessed on 18 January 2023),
TranAD: https://github.com/imperial-qore/TranAD (accessed on 18 January 2023)) or
implemented by us if a Python version was not available (MERLIN: https://gitlab.com/
dlr-dw/py-merlin (accessed on 18 January 2023)). The Autoencoder model was imple-
mented using the PyTorch[43] library and is available in the repository for this work
(https://gitlab.com/dlr-dw/is-it-worth-it-benchmark (accessed on 18 January 2023)). The
relevant hyperparameters for each model were tuned through 20 rounds of Bayesian opti-
mization on 25 randomly selected time series from the UCR Anomaly Archive, using the
F1 score as the optimization target. The time series used for hyperparameter tuning were
excluded from the actual experiments. A table containing all hyperparameters obtained
from that search can be found in Appendix A.2. All experiments were run on an Intel
Xeon Platinum 8260 CPU with 10GB of allocated memory For TranAD, we increased the
memory to 20GB for the timeseries “239_UCR_Anomaly_taichidbS0715Master_190037_-
593450_593514.txt”, “240_UCR_Anomaly_taichidbS0715Master_240030_884100_884200.txt”
and “241_UCR_Anomaly_taichidbS0715Master_250000_837400_839100.txt”. We ran all
experiments six times: the first time, we set the random number generators of Python,
Numpy and PyTorch to a fixed value (we used 42 as the seed value across all experiments)
and then performed five repetitions without setting a random seed to account for random
sampling effects.

2.3.1. Benchmark Pipeline

To maintain a controlled experimental environment and ensure fairness among all
experiments, we implemented the pipeline shown in Figure 3. The time series data were
normalized to the interval [0, 1] and a sliding window approach was applied, depending
on the requirements of each method. While AE, GANF and TranAD require input data to
be given as subsequences with fixed length L, MDI and MERLIN require the entire time
series, along with a range of subsequence lengths Lmin and Lmax.

In the case of the MDI and MERLIN methods, the range of subsequence lengths used
was arbitrarily set to Lmin = 75 and Lmax = 125 time steps. For TranAD, the subsequence
length L = 10 and stride s = 1 were used, according to the experiments in [13] for
the time series taken from the UCR anomaly archive. For GANF, a subsequence length
of L = 100 was chosen, which is in the middle of the range Lmin and Lmax, and stride
s = 10 based on [12]. As for the AE method, the subsequence length L = 10 and stride
L = 10 were determined empirically. RRCF does not require the data to be given as
subsequences. A table summarizing the configurations used in our experiments can be
found in Appendix A.2.

Normalization 
&  

Sequencing
Anomaly

Detection Method Score ClassifierInput Time
Series

Anomaly
Score

Figure 3. Benchmark pipeline used in the experiments.

The normalized time series or subsequences were then used as input for the respective
anomaly detection method, which calculates an anomaly score. MERLIN is an exception
in this regard, as it returns only the anomalous subsequences. As the scores produced by
the different methods are very heterogeneous, we employed a method called Peak Over
Threshold (POT) [44] to determine a suitable threshold for classifying subsequences as
normal or anomalous. This approach was also used in previous works such as [13,40,45].

https://github.com/kLabUM/rrcf
https://github.com/cvjena/libmaxdiv
https://github.com/EnyanDai/GANF
https://github.com/imperial-qore/TranAD
https://gitlab.com/dlr-dw/py-merlin
https://gitlab.com/dlr-dw/py-merlin
https://gitlab.com/dlr-dw/is-it-worth-it-benchmark
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2.3.2. Anomaly Score Classification

To ensure a fair comparison of the results produced using the six anomaly detection
methods, we use the principle of Extreme Value Theory (EVT) to determine a threshold for
classifying subsequences as anomalous or normal [44]. EVT is an approach used to find
the law of extreme values, which are often located in the tails of a probability distribution,
without making any assumptions about the data distribution [46]. The Peaks-Over-Threshold
(POT) method [44], which is the second theorem in EVT, fits the tail of a probability
distribution with a Generalized Pareto Distribution (GPD). In the context of anomaly score
classification, the Peak-Over-Threshold (POT) method is utilized to learn an appropriate
threshold for the anomaly scores {σ1, σ2, . . . , σn} [46]. Specifically, the Generalized Pareto
Distribution (GPD) is adapted to focus on values at the low ends of the distribution.
According to [46], a modified version of POT for anomaly score classification is defined as
follows: Given a random variable S that models the anomaly scores {σ1, σ2, . . . , σn} and an
initial threshold th0, the cumulative distribution function of the GPD is adapted to:

F̃(s) = P(th0 − S > s|S < th0) ∼ (1 +
γs
β
)−

1
γ , (1)

where β and γ are the scale and shape parameters of the GPD. The threshold th is then
computed by:

th ' th0 − β̂

γ̂
((

qn
nth0

)−γ̂ − 1) , (2)

where β̂ and γ̂ are the maximum likelihood estimates of the scale and shape parameters
in Equation (1) estimated from {σ1, σ2, . . . , σn}, q is the preferred probability to observe
an anomaly score below the initial threshold S < th0 and nth0 is the number of anomaly
scores below the initial threshold |{σi|σi < th0}|. The anomaly label yi for a predicted
subsequence Ŝi,i+w of length w is obtained by:

yi = 1(σi ≥ th) ,

where σi is the anomaly score for the subsequence Ŝi,i+L, th is the threshold from Equation (2),
and 1(·) is the indicator function. For further information on POT, interested readers may
refer to [44,46]. In the experiments, the Streaming POT variant from [44] is used, with
POT being initialized on the first 10% of the anomaly scores and the parameter q set to
0.01 empirically.

We do not perform this step for the MERLIN method because it already returns binary
labels per subsequence. Since it is typically acceptable for an algorithm to detect any point
in an anomalous subsequence as long as the delay is not too long, we adopt the method
proposed in [25] and subsequently used in [13,47] for adjusting the predicted anomalous
labels to account for varying subsequence lengths. If a point in a true anomalous segment
can be detected by the derived score and threshold, we count this segment as correctly
detected from that point forward and treat all points within the segment as if they could be
detected by the threshold.

2.3.3. Quality Measures

To evaluate the performance of the anomaly detection methods, we use the area under
the receiver operating characteristic curve (AUC ROC), F1 Score and UCR score. The
UCR score (the scoring function is not named in [42], so we call it the UCR score) is the
recommended metric provided with the UCR Anomaly Archive. To calculate the AUC
ROC and F1 Score, we scale the anomaly scores for the subsequences back to the length of
the subsequence and calculate point-wise metrics.
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AUC ROC

The AUC ROC is a measure of the ability of a binary classifier to separate two classes
and can be seen as a single-number summary of a ROC plot [48]. In a ROC plot, the
true-positive rate is plotted against the false-positive rate at increasing threshold levels for
thresholding the output of the classifier. The higher the AUC ROC, the more easily the
classifier can separate the two classes. A perfect classifier achieves a score of one by ranking
all examples of the positive class higher than all examples of the negative class. Therefore,
we use the AUC ROC as a measure of the quality of the produced anomaly scores: a high
score indicates good separability between normal and anomalous points or subsequences.
We are aware that the AUC ROC is not a suitable measure for unbalanced problems such
as anomaly detection, where the anomalous class is small by definition, but we report it
due to its widespread use in the literature.

F1 Score

The F1-Score is the harmonic mean of precision and recall and is defined as

F1 = 2 · precision · recall
precision + recall

=
TP

TP + 1
2 (FP + FN)

where TP, FP and FN are the true-positive, false-positive and false-negative detections, and
precision and recall are defined as:

precision =
TP

TP + FP
, recall =

TP
TP + FN

.

Since the F1 Score is calculated based on the result of the binary classification, it provides
evidence about the quality of the threshold used. If a method has a high AUC ROC but a
low F1 Score, this would indicate a poor threshold.

UCR Score

The UCR score is the recommended metric provided with the UCR Anomaly Archive
and is a binary score indicating whether or not a method was able to find the single anomaly
in a time series. It is defined as:

UCRscore := 1(min(a− LS̃, a− 100) < t∗ < max(b + LS̃, b + 100)) (3)

where a and b are the beginning and end of the true anomaly with length LS̃, t∗ is the
timestamp of the point with the highest anomaly score, and 1(·) is the indicator function.
For subsequences Si,j, we use the middle point t∗ = i + b j−i

2 c. The tolerance of 100 time
steps is added to account for very short anomalies [42].

Being a binary measure, the UCR score tells us whether or not the single anomaly
in a certain time series was detected by having the highest anomaly score. A UCR score
of zero does not convey any information about whether the anomaly was found, but a
false-positive result has a higher anomaly score or was not detected at all. As this might
not be necessary for a situation such as a challenge, where only positive results matter, it
is essential to consider other metrics such as the F1 score alongside visual inspection to
correctly interpret the results. If a method shows a UCR score of one but a low F1 score at
the same time, this indicates the detection of the true anomaly with the highest anomaly
score; otherwise, the UCR score would be zero. A low F1 score, however, can be either
caused by the presence of false-positive or false-negative results. It may also be subject to
the detection of a short anomaly within the 100 time steps tolerance interval considered in
Equation (3). Therefore, evaluating the F1 score alone is not sufficient. On the other hand,
if a method shows a UCR score of 0 but a high F1 score, this indicates that the anomaly was
identified without many false positives or false negatives, but that the anomaly score for
the true anomaly ranked lower than for false detections. The reasons for false positives or
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false negatives can be manifold and will be discussed in more detail at the beginning of
Section 4. When interpreting aggregated UCR scores, an averaged UCR score of 0.5 means
that the true anomaly was successfully identified as having the highest anomaly score in
half of the analyzed time series.

3. Results

We analyze the six anomaly detection methods regarding their overall performance
in Section 3.1 and their differences in detecting certain types of anomalies in Section 3.2.
Beyond that, we analyze the influence of varying subsequence lengths on MDI and MER-
LIN, and thus, their ability to utilize additional information about the anomalies in Sec-
tion 3.3 and compare the point-wise application of RRCF to the raw time series to that on
subsequence-wise statistical vectors in Section 3.4.

3.1. Performance Analysis by Method

We evaluate the performance of six anomaly-detection methods using three metrics:
macro-averaged AUC ROC, F1 score and UCR score, as well as the average runtime for a
single time series. The results are visualisd in Figure 4. Of the methods compared, MDI
achieves the highest AUC ROC and UCR scores, while MERLIN performs better in terms
of F1 score. Among the deep-learning methods, GANF has the highest scores across
all three metrics. F1- and UCR scores are 4% lower compared to the best-performing
classical method, and the AUC ROC of 0.66 is the second best. AE scores are higher than
TranAD for the AUC ROC and UCR Score, while TranAD shows a slightly higher F1 score.
RRCF performs poorly, failing to detect a notable amount of anomalies in the test set and
demonstrating the lowest F1 and UCR scores. The numerical results are shown in Table 2.
The scores in Table 2 are generally low across all methods, likely due to the test set time
series producing low or zero scores. We discuss the implications of various combinations of
high and low scores, as well as their potential causes, in Section 4. MDI and MERLIN, being
deterministic methods, are not subject to sampling effects and therefore have a standard
deviation of 0.0 among the six repetitions of the experiment.
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0

0.2

0.4

0.6
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TRANAD

(a)
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(b)
Figure 4. (a) Macro-averaged performance metrics for each method. The error bars indicate the
standard deviation caused by random effects over six repetitions of the experiment. (b) Average
runtime per time series. For the deep-learning methods, training time is included. The error bars
indicate the standard deviation over six repetitions of the experiment.

In terms of average runtime for a single time series from the UCR anomaly Archive,
MDI performs best, with a runtime of 74 s. TranAD is about 22 s slower on average
(96 s) and GANF has an average runtime of 109 s. AE has a runtime that is twice as long
as that of MDI, while RRCF (162s) has a slightly longer runtime, but both fall below 200
s. MERLIN has the worst runtime of 291 s, which is almost four times that of MDI. It
is worth noting that these runtimes may be influenced by the specific implementations
used. MDI is implemented in C++ with a Python interface, while the other methods are
purely implemented in Python. For the deep learning methods AE, GANF and TranAD,
the training time is included in the reported runtime.



Appl. Sci. 2023, 13, 1778 12 of 26

Table 2. Performance comparison of six anomaly detection methods on macro-averaged AUC ROC,
F1 score, UCR score and runtime for a single time series. Results are grouped by model class (classical
ML and deep learning) and presented as mean ± standard deviation over six repetitions. The value
in each second column denotes the mean aggregated by method class.

Class Method AUC ROC F1 Score UCR Score Runtime (sec)

Classical ML
MDI 0.66 ± 0.0

0.58 ± 0.0006
0.25 ± 0.0

0.20 ± 0.004
0.47 ± 0.0

0.31 ± 0.0033
74

MERLIN 0.51 ± 0.0 0.27 ± 0.0 0.44 ± 0.0 291
RRCF 0.56 ± 0.0019 0.07 ± 0.011 0.03 ± 0.0094 162

Deep Learning
AE 0.58 ± 0.01

0.59 ± 0.002
0.16 ± 0.013

0.19 ± 0.009
0.28 ± 0.025

0.29 ± 0.007
149

TranAD 0.56 ± 0.003 0.18 ± 0.003 0.16 ± 0.003 109
GANF 0.63 ± 0.009 0.23 ± 0.021 0.43 ± 0.03 96

To target the main question addressed in this paper, we aggregated the results by
model class and visualized them using violin plots in Figure 5. The violin plots show
the kernel density estimates for the two classes: “Classical Machine Learning Methods”
(containing MDI, MERLIN and RRCF) and “Deep Learning Methods” (containing AE,
GANF and TranAD). All density curves have two peaks: one around 0.5 for AUC ROC and
0.0 for F1 and UCR scores, and a smaller one around 0.9 (F1 score) and 1 (AUC ROC and
UCR score). The peaks around 0.5 and 0 represent those results where the methods failed to
detect anomalies, while the peaks around 0.9 and 1 mark successful anomaly detection. For
the F1- and UCR scores, the area under the peaks at 0.9 and 1 is larger for the classical ML
methods than for the deep-learning methods, indicating more successful anomaly detection
for the “Classical ML” class. Conversely, the area under the peaks at 0.5 and 0 is larger for
the deep-learning methods.

AUROC F1 UCR
0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Classical ML
Deep Learning

Figure 5. Distribution of results for the AUC ROC, F1 Score and UCR score aggregated by model
class. The dashed lines encode the quartiles of the distributions. The area under the peaks around 1
is larger for the Classical ML methods for F1- and UCR score.

3.2. Performance Analysis by Anomaly Type

The second area of interest in this study is the differences between the analyzed
methods to detect certain types of anomalies. Therefore, we aggregated our results based
on the 16 anomaly classes described in Section 2.2.2. The results are shown in Figure 6.

The anomaly that was detected by all methods except RRCF is the “steep increase”
anomaly shown in Figure 7a. This anomaly can be found in two time series of the UCR
Anomaly Archive which represent the same data but were distorted in one case, which is
shown in Figure 7a. According to the UCR score, MDI and MERLIN detect this anomaly
in every repetition of the experiment with the highest UCR score. As both methods are
deterministic, it is expected that the results do not differ between multiple runs. AE finds
this anomaly in 11/12 cases. GANF and TranAD detect the “steep_increase” anomaly only
in the undistorted version of the time series. RRCF and TranAD detect the “smoothed
increase” anomaly shown in Figure 7b where a normally steep increase was smoothed by
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increasing the number of different values in one cycle. For RRCF, this is also the only type
this method can find. While RRCF has a UCR score below 0.05 for 14/16 anomaly types, it
detects the “smoothed increase” anomaly with a UCR score of 1.0 and an F1 score of 0.86.
TranAD finds this anomaly in 5/6 cases.

For the remaining anomaly types, the results are more diverse. GANF, MERLIN
and TranAD find the majority of the 23 “outlier” anomalies, with GANF and TranAD
performing better than MERLIN on this type. The 23 “noise” anomalies, however, are
detected by AE, GANF and MDI, with MDI finding every single one with the highest
anomaly score.

From a method point-of-view, MDI achieves UCR scores above or equal to 0.5 for the
classes “time warping”, “steep increase”, “sampling rate”, “noise”, “missing peak”, “local
peak” and “local drop”. For the “noise”-type anomalies, the F1 score is above 0.5 as well.
The results for AE tend to look similar to those of MDI, but the scores for AE are mostly
a few points lower; therefore, AE has a UCR score above 0.5 only for “noise” and “steep
increase”, with the latter having an F1 Score of 0.92. MERLIN shows a UCR score above
or equal to 0.5 for “steep increase”, “outlier”, “missing drop”, “local peak”, “frequency
change” and “amplitude change” anomalies, making “steep increase” and “missing peak”
the only classes in which both methods have a UCR score above or equal 0.5. In terms of
F1 Score, MERLIN scores above 0.5 for the classes “noise” and “steep increase”. GANF is
the best-performing method regarding the anomaly types “time warping” and “outlier”
with UCR scores of 0.75 and 0.78 and F1 scores of 0.78 and 0.45, respectively. Additionally,
GANF detects at least half of the anomalies with the type “steep increase” and “noise”.
TranAD achieves a UCR score above or equal to 0.5 for the classes “outlier”, “smoothed
increase” and “steep increase”, but for the latter, the corresponding low F1 Score indicates
a high number of false positives. For the “sampling_rate” anomalies, the opposite is true,
as the F1 Score is 0.61 here, but the UCR score is 0.0.

We will discuss these differences in Section 4 in more detail. TMDI and MERLIN
together detect the anomalies of more than two-thirds of the annotated anomaly types. For
the classes “flat”, “reversed”, “time shift” and “unusual pattern”, no method achieved a
UCR score above or equal to 0.5.
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Figure 6. The heatmaps show the macro-averaged AUC ROC, F1 and UCR scores for the 16 annotated
anomaly types over six repetitions of the experiment. Next to the anomaly type, the number of times
series containing that type is shown in parenthesis. The standard deviations resulting from random
effects can be found in Appendix A.3.
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Figure 7. Time Series containing “steep increase” (a) and “smoothed increase” (b) anomalies.
(a) Overview (top) and detail (bottom) plot of the distorted time series containing the “steep in-
crease” anomaly. The ground truth anomaly is highlighted in green. (b) Overview (top) and detail
(bottom) plot of the time series containing the “smoothed increase” anomaly. The ground truth
anomaly is highlighted in green, while the sections where the smoothing is visible are highlighted
in red.

3.3. The Influence of Subsequence Length on MDI and MERLIN

The goal of this experiment was to examine the influence of the subsequence length
on the results for MDI and MERLIN and to evaluate their ability to utilize additional
information about the problem domain given with the range of subsequence lengths. To
make a fair comparison, we fixed the subsequence length range for MDI and MERLIN
to Lmin = 75 and Lmax = 125 time steps in the results presented in Sections 3.1 and 3.2,
regardless of the specific characteristics of the individual time series, such as cycle length
or expected length of the anomaly.

We therefore compare the baseline results from Section 3.1 with two strategies for
setting the subsequence range. For the “dynamic” strategy, we provided additional infor-
mation by setting the range of subsequence lengths based on the length LS̃a,b = b− a of
the true anomaly S̃a, b to LS̃a,b

± 25%. For the “fixed” strategy, we chose a fixed length of
100 timesteps, thereby reducing the given information compared to the baseline.

The results for MDI, shown in Figure 8a, demonstrate that fixing the subsequence
length to 100 and reducing the given information leads to a decrease in the AUC ROC and
F1 score. In contrast, choosing the range for the subsequence length dynamically leads to
an increase in the AUC ROC and F1 score. The results for the UCR score do not reflect
this trend; the highest UCR score is still achieved with the baseline configuration, but the
difference between the fixed and dynamically chosen subsequence length is relatively small.

The results for MERLIN, displayed in Figure 8b, show similar behavior, but the
differences between the strategies are more pronounced. For MERLIN, the positive effect
of additional information is present across all three metrics.

AUC ROC F1 Score UCR Score
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MDI-dynamic
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Figure 8. Results for different subsequence lengths for MDI (a) and MERLIN (b). (a) The baseline
results “MDI” are those from the main experiments using a subsequence length range of Lmin = 75
and Lmax = 125. The results labeled “MDI_fixed_100” were obtained using a fixed subsequence
length of 100 time steps, while the results labeled “MDI_dynamic” were obtained by individually
setting Lmin and Lmax to 75% and 125% of the true anomaly length, respectively, for each time
series. (b) The baseline results “MERLIN” are those from the main experiments using a subsequence
length range of Lmin = 75 and Lmax = 125. The results labeled “MERLIN_fixed_100” were obtained
using a fixed subsequence length of 100 time steps, while the results labeled “MERLIN_dynamic”
were obtained by individually setting Lmin and Lmax to 75% and 125% of the true anomaly length,
respectively, for each time series.
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3.4. RRCF on Sliding Window Statistics

RRCF applied to point-wise features is tailored towards finding point anomalies due
to its principle of isolating single points. In this experiment, we compare the baseline RRCF
we used in the former experiments (RRCF@points) to an alternative (RRCF@sequences)
where we preprocess the time series by computing a vector consisting of the minimum,
maximum coefficient of variation and the first four moments (mean, variance, skewness
and kurtosis) of a sliding window. We choose a subsequence length of 100 and a stride of
50. We also tuned the hyper-parameters n_trees and tree_size as described in Section 2.3.
The results are shown in Figure 9. Using subsequence-wise features for RRCF increased
the AUC ROC from 0.56 to 0.7, making this the best AUC ROC result among the analyzed
methods. Additionally, the UCR score increased for RRCF@sequences by a factor of 5 from
0.03 to 0.15. The F1 score did not change substantially. While RRCF applied to point-wise
features was the only method detecting the “smoothed increase” anomaly, this anomaly is
not detected any more. Instead, RRCF applied to subsequence-based features detected the
‘steep increase’ anomalies, like the other five methods. For all other anomaly types except
“midding drop”, the UCR score increased for RRCF@sequences. The highest increase is
made for the “time warping” anomaly from 0.0 to 0.4.
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Figure 9. Comparing AUC ROC, F1- and UCR score of the baseline RRCF using the raw time series
as input (RRCF@points) to RRCF applied on sliding window statistics (RRCF@sequences). (a) Macro-
averaged performance metrics for each method. The error bars indicate the standard deviation caused
by random effects over six repetitions of the experiment. (b) Macro-averaged AUC ROC, F1 and UCR
scores for the 16 annotated anomaly types over six repetitions of the experiment. Next to the anomaly
type, the number of timesseries containing that type is shown in parenthesis.

4. Discussion

Before discussing the results obtained for individual methods, it is necessary to explain
how to interpret the various metrics and their combinations. The low macro-averaged
scores across all methods shown in Table 2 can have different causes. To understand these,
we will build upon the discussion of the importance of jointly analyzing different metrics,
given in Section 2.3.3, and focus on the various reasons for false-positive or false-negative
results in the following. For instance, a low F1 score may be due to an insufficient anomaly
score, which prevents the detection of the true anomaly, or it may be due to a poor choice
of threshold, leading to an increase in false positives.

Figure 10 illustrates this using different results for the autoencoder model. A high
F1 score and a UCR score of one at the same time indicate the successful detection of the
true anomaly without any—or with very few—false-positive results, depending on the
value of the F1 score, as shown in Figure 10a,d. On the other hand, a low F1 score and a
UCR score of 0, as shown in Figure 10b,f, indicate that the anomaly was not detected due
to an insufficient anomaly score. In this case, a high AUC ROC value may indicate that
the anomaly could have been detected with a low anomaly score, but the threshold was
set too high, resulting in the subsequence not being classified as anomalous. Figure 10b,f
also demonstrate that AUC ROC is generally not a suitable measure to assess the quality of
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results in highly unbalanced problems in a meaningful way. In both cases, the anomaly
score is not suitable for detecting the true anomaly.

A high F1 score but a UCR score of 0, as shown in Figure 10c, indicates that the true
anomaly was detected, but a false-positive result has a higher anomaly score. A UCR
score of one but a low F1 score signifies the correct detection of the true anomaly with the
highest anomaly score, but false-positive or false-negative results lead to a low F1 score.
Figures 11 and 12 illustrate the different reasons for this situation, which can be caused by
a poor threshold value, as shown in Figure 11b; or the detected anomaly’s subsequence
length being much longer, as in Figure 11a, or shorter than the ground truth label, as in
Figure 12b. This leads to increased false-positive or false-negative results, respectively. A
fourth case with this result occurs from the detection of a short anomaly within the 100
time steps tolerance, which is considered in the definition of the UCR score in Equation (3).
This is shown in Figure 12a.

051_UCR_DISTORTEDTkeepSecondMARS

(a)

229_UCR_mit14134longtermecg

(b)
184_UCR_resperation10

(c)

141_UCR_InternalBleeding5

(d)
185_UCR_resperation11

(e)

182_UCR_qtdbSel1005V

(f)
Figure 10. Interpretation of results shown on examples of the autoencoder model. The top figure
represents the time series with the true anomaly marked in red, while the bottom figure shows
the anomaly score, with the pink horizontal line being the determined threshold and the predicted
anomalies highlighted in green. (a) High AUC ROC, F1- and UCR scores indicate correct detections
without or with very few false positives. (b) High AUC ROC but low F1- and UCR score indicate
an insufficient anomaly score and/or an insufficient threshold. (c) A high F1- but a low UCR score
indicates the detection of the true anomaly but a false positive has a higher anomaly score. (d) Low
AUC ROC but high F1- and UCR score indicate a correct detection of the labeled anomaly without or
with few false positives but the detected subsequence is shorter than the true anomaly. (e) High UCR-
but low F1 score indicates the correct detection of the true anomaly by the highest anomaly score but
a bad threshold value leading to an increased number of false positives. (f) Low AUC ROC, F1- and
UCR scores indicate an insufficient anomaly score not detecting the true anomaly.
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(b)
Figure 11. Two different reasons for low F1 scores—(a) shows a result from MDI, (b) shows a result
from TranAD. (a) Low F1 score caused by false positive results due to the length of the correct
detected anomaly. (b) Low F1 score caused by false positive results due to a poor threshold.

084_UCR_DISTORTEDs20101mML2

(a)

237_UCR_mit14157longtermecg

(b)
Figure 12. Two different reasons for low F1 scores. Both results are from RRCF. (a) The anomaly
is detected slightly after the ground truth label but within the 100 time steps tolerance for short
anomalies in the UCR score. (b) The detected anomaly is shorter than the ground truth label causing
false negatives in the computation of the F1 score.

The best results in terms of F1 score and UCR score are obtained by MDI and MERLIN,
with MERLIN having a slightly higher F1 score and MDI scoring slightly higher in terms of
UCR score. The differences between these two methods are around 0.02. This difference in
F1 score is likely due to the different methods used to choose the threshold. Both methods
return a score only for the detected anomalous sequences, but MDI either requires the
number of anomalies to be returned or may return a score for up to every subsequence.
In order to not give MDI an advantage over its competitors, the latter option was chosen
and a threshold was determined using the POT method instead of the minimum anomaly
score, as was the case for MERLIN. This makes MDI more prone to detecting false positives
in the described setup compared to MERLIN, which only returns the subsequences that
have been detected as anomalous. RRCF performs poorly in terms of F1 score and UCR
score, which may be due to its mechanism for isolating single points and its focus on point
anomalies.

Among the deep-learning methods, GANF demonstrates the best performance. GANF
achieves the highest scores for all three metrics and detects the largest variety of anomaly
types. The results for AE and TranAD are mixed. AE has a higher AUC ROC and UCR
score, but it only detects two different anomaly types with a UCR score above 0.5. TranAD,
in contrast, has a slightly higher F1 score when compared to AE and detects three different
anomaly types.

Despite the low results for RRCF, the classical machine-learning methods show supe-
rior performance compared to the deep-learning methods when aggregating the results by
method class, as shown in Figure 5. This difference is particularly notable in the F1 score.
One assumption might be that these methods perform better in unsupervised settings that
do not require a training phase. However, this is contradicted by the RRCF results.

In terms of runtime, MERLIN has the longest average processing time of 291 s per time
series. This runtime is mainly determined by the discord discovery algorithm that is called
for every subsequence length Li ∈ {Lmin, . . . , Lmax}. The complexity of this algorithm is
quadratic with respect to the size of the set of potential discords, which is determined in the
candidate selection phase. However, for small candidate sets produced by a “good” choice
for the parameter r [11], the complexity becomes effectively linear. As MERLIN starts with
the highest possible value for r and decreases it, it is unlikely to encounter a case in which
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a small r value causes the candidate subset to become too large. On the other hand, MDI
uses a subsequence proposal technique based on Hotelling’s T2 method [31], which selects
interesting subsequences based on point anomaly scores rather than performing full scans
of the data. In addition to these differences in candidate subsequence selection, the specific
implementations of the algorithms also have a significant impact on their runtime. While
we implemented MERLIN purely in Python, MDI is implemented in C++ with a Python
interface.

All methods except RRCF were able to detect the “steep increase” anomaly shown
in Figure 7a, with varying UCR scores ranging from 0.5 for GANF and TranAD to 1.0 for
MDI and MERLIN. The low F1-Score for MDI indicates a high number of false-positive
results, which in this case depends on the length of the detected subsequence, as shown in
Figure 11a. In contrast, the low F1 score for TranAD is caused by a poor threshold, leading
to an increased number of false-positive results, as shown in Figure 11b.

RRCF is unique in its ability to detect the “smoothed increase” anomaly shown in
Figure 7b, but not the “steep increase” anomaly detected by the other five methods. This
behavior can be explained by the working principle of RRCF to isolate single points. The
values in the smoothed subsequence occur only once in the time series and can therefore
be isolated from all other values. That RRCF does not find the outlier anomalies seems
contradicting, but this is due to the time series containing other extreme values, e.g., with
an inverted sign, covering the true anomaly in the anomaly score.

The comparison of different strategies for choosing the range of subsequence lengths
for MDI and MERLIN presented in Section 3.3 reveals that both methods can utilize
additional information about the anomalies, with a stronger effect for MERLIN. Providing
additional information in terms of the subsequence length of the true anomaly increased
the F1 score for MDI but decreased the UCR score by 0.02, which indicates that MDI utilized
the additional information to reduce false-positive results. For MERLIN, the F1 score and
UCR score increased, indicating that the information on the true anomaly length helped
MERLIN to identify anomalies it missed before.

In the final experiment, we used subsequence-based statistics instead of point-wise
features for RRCF, which increased the UCR score and the AUC ROC. However, the macro-
averaged F1 score slightly decreased due to its inability to detect the “smoothed increase”
anomaly. Instead, RRCF@sequences was able to detect the “steep increase” anomaly like the
other five methods, indicating that this anomaly can only be detected on the subsequence
level. The low F1 scores for RRCF@sequences on those time series with a UCR score of one
are mostly caused by the anomaly being detected slightly before or after the ground truth
label but within the 100 time steps tolerance for short anomalies, or by the true anomaly
being much shorter or longer than the subsequence length used for RRCF@sequences.
Figure 12 illustrates these two cases.

We conclude this section by summarizing the strengths and weaknesses of the methods
analyzed in this study. MDI and MERLIN have the notable advantage of not requiring
any hyperparameter tuning. The only parameters that need to be set are the minimal and
maximal subsequence lengths, which practitioners select based on the specific application
or domain. Despite the arbitrary choice of Lmin = 75 and Lmax = 125 time steps, MDI and
MERLIN still outperform all other methods in this study. Additionally, these methods
detect a wide range of anomaly types. However, a disadvantage of MDI and MERLIN is
that they are not immediately applicable in an online setting. Although discord discovery
can be performed online using a different algorithm such as DAMP [49], MERLIN cannot
be directly applied to data streams. Similarly, while it may be possible to adapt MDI to
consider only subsequences up to a given timestamp when estimating the density of Ω(S),
the current version of MDI does not support this.

The isolation forest approach used in RRCF is intuitive and can be applied to data
streams; these factors are advantages of RRCF. However, RRCF shows poor results in this
study and may be more suitable for applications in which outliers have distinct values from
normal data. All three classical methods have the advantage of being easily interpretable.
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GANF is the best-performing deep learning-based method in this study, which sug-
gests that density-estimation-based methods are effective when it comes to detecting
anomalous sequences. Additionally, GANF is capable of being applied online once trained
and has the potential to learn the dependency graph of multiple time series, which, al-
though not analyzed in this study, could be beneficial in specific applications. A major
disadvantage of GANF is that it requires values to be selected for numerous hyperparam-
eters. In our experiments, we used Bayesian Optimization to determine suitable values
for the three most important hyperparameters (latent space dimension, learning rate and
number of blocks), as identified by [12], using 10% of the time series in the UCR Anomaly
Archive. We used the default values from [12] for the remaining eight hyperparameters, as
they had not been tuned in that study either. Using default values from [12] for the three
tuned hyperparameters leads to a decrease in the F1 score of 2–5% and a drop in the UCR
score of up to 19%. However, averaging the two sets of hyperparameter values used in [12]
increases the UCR score by approximately 6%. These better hyperparameters were not
identified during the hyperparameter search, which highlights the general disadvantage of
methods with a high number of hyperparameters.

The results for AE and TranAD are inconclusive, but are generally worse when com-
pared to GANF. However, they are not as poor as the results for RRCF. Additionally, these
two methods also have the disadvantage of having various hyperparameters that need to
be set. When using the default parameters from [13] for TranAD, the results for F1- and
UCR score decrease by about 4–2%, depending on which set is used. The values mentioned
in the paper differ from those used in the repository. For AE, we do not have a set of
default parameters, but we observed comparable or slightly worse results when choosing
an arbitrary set of parameters. Like GANF, both methods have the advantage of being able
to be applied to data streams after training.

5. Conclusions

In this study, we compared six anomaly detection methods, three of which were
classical machine-learning methods and three of which were based on deep learning.
We conducted extensive experiments on the UCR Anomaly Archive benchmark dataset,
which we annotated with the types of anomalies present. We compared the methods on
both a dataset level and an anomaly-type level to address two main questions: Does the
potential superior performance of deep-learning methods justify the sacrifice of the intrinsic
interpretability of classical methods? What are the similarities and differences between the
analyzed methods when detecting different anomaly types? Our experiments showed that
the classical machine-learning methods MDI and MERLIN outperform the deep-learning
methods. The third classical method, RRCF, was unable to detect a substantial number of
anomalies, but it improved when using sequence-based statistical features instead of raw
data points. Among the deep learning methods, the Autoencoder model detected the most
anomalies and was also the simplest model in this group.

While we present our experimental results in this work, a deeper theoretical analysis of
the reasons and mechanisms behind these results is left for future research. Regarding the
second question about the similarities and differences in detecting certain anomaly types,
we found that all subsequence-based methods detect the “steep increase” anomaly but not
the “smoothed increase”, while the opposite is true for the method that uses point-wise
features. However, these classes are too small to produce a significant result. Although
MDI and MERLIN had the best results in this comparison, they detected a diverse range of
anomaly types. Together, they detected most of the anomalies, i.e., they detected 11 out of
16 anomaly types. However, the anomaly types “unusual pattern”, “time shift”, “reversed”
and “flat” could not be reliably detected by any of the analyzed models. A more theoretical
analysis of these results will be conducted in a subsequent study.
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Appendix A

Appendix A.1

Table A1. Description of the annotated anomaly types in the UCR Anomaly Archive dataset.

Anomaly Type Description Example

Amplitude Change

Amplitude of the
signal increased or
decreased within a
section.

Flat Flat section was
added.

Frequency Change
The cycle length was
modified within a
section.

Local Drop

A drop was added,
which is shallower
than the minimal value
of the time series.

Local Peak

A peak was added,
which is lower than
the maximal value of
the time series.

Missing Drop A drop was removed.
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Table A1. Cont.

Anomaly Type Description Example

Missing Peak A peak was removed.

Noise Noise was added to a
section.

Outlier A global outlier.

Reversed Cycle(s) got reversed.

Sampling Rate

The sampling rate of
the signal was
increased or decreased
in a section.

Signal Shift A section was shifted
up or down.

Smoothed Increase

A otherwise steep
increase was
smoothed, increasing
the number of
individual values in
this section.

Steep Increase

A otherwise smooth
increase was made
steep, reducing the
number of individual
values within this
section.

Time Shift Increasing the pause
between two peaks.

Time Warping
Moving the cycle peak
without changing the
cycle length.

Unusual Pattern
Replacement of one or
more cycle(s) with a
different pattern.
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Appendix A.2

Table A2. Tuned and not tuned parameters used in our experiments. All other parameters within the
methods have been kept to their default values.

Parameter Value Tuned?

AE subsequence length 10 no
stride 10 no
epochs 20 no
batch size 32 no
latent space dimension 16 yes
learning rate 0.005 yes
weight decay 10−5 no

GANF subsequence length 100 no
stride 10 no
epochs 20 + 30 no
batch size 32 no
latent space dimension 16 yes
learning rate 0.003 yes
n_blocks 4 yes
weight decay 10−5 no
h_tol 10−4 no
rho_init 1.0 no
rho_max 1016 no
lambda1 0.0 no
alpha_init 0.0 no

MDI Lmin 75 no
Lmax 125 no

MERLIN Lmin 75 no
Lmax 125 no

RRCF n_trees 51 yes
tree_size 1001 yes

RRCF@sequences subsequence length 100 no
stride 50 no
n_trees 68 yes
tree_size 150 yes

TranAD subsequence length 10 no
stride 1 no
epochs 1 no
batch size 128 no
learning rate 0.02 yes
weight decay 10−5 no
step size 3 yes
gamma 0.75 yes
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Appendix A.3
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Figure A1. The heatmaps show the standard deviation for AUC ROC, F1 Score and UCR Score over
six repetitions of the experiment. Next to the anomaly type, the number of times series containing it
is shown in parenthesis. The respective macro-averaged mean values can be found in Figure 6.
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