Della Santina, Cosimo und Angelini, Franco (2022) Iterative Learning in Functional Space for Non-Square Linear Systems. In: 60th IEEE Conference on Decision and Control, CDC 2021, Seiten 5858-5863. IEEE. 2021 60th IEEE Conference on Decision and Control (CDC), 2021-12-14 - 2021-12-17, Austin, TX, USA. doi: 10.1109/CDC45484.2021.9683673. ISBN 978-166543659-5. ISSN 0191-2216.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://dx.doi.org/10.1109/CDC45484.2021.9683673
Kurzfassung
Many control problems are naturally expressed in continuous time. Yet, in Iterative Learning Control of linear systems, sampling the output signal has proven to be a convenient strategy to simplify the learning process while sacrificing only marginally the overall performance. In this context, the control action is similarly discretized through zero-order hold - thus leading to a discrete-time system. With this paper, we want to investigate an alternative strategy, which is to track sampled outputs without masking the continuous nature of the input. Instead, we look at the whole input evolution as an element of a functional subspace. We show how standard results in linear Iterative Learning Control naturally extend to this context. As a result, we can leverage the infinite-dimensional nature of functional spaces to achieve exact tracking of strongly non-square systems (number of inputs less than outputs). We also show that constraints - like those imposed by intermittent control - can be naturally integrated within this framework.
elib-URL des Eintrags: | https://elib.dlr.de/193633/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Iterative Learning in Functional Space for Non-Square Linear Systems | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 1 Februar 2022 | ||||||||||||
Erschienen in: | 60th IEEE Conference on Decision and Control, CDC 2021 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.1109/CDC45484.2021.9683673 | ||||||||||||
Seitenbereich: | Seiten 5858-5863 | ||||||||||||
Verlag: | IEEE | ||||||||||||
ISSN: | 0191-2216 | ||||||||||||
ISBN: | 978-166543659-5 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | linear systems | ||||||||||||
Veranstaltungstitel: | 2021 60th IEEE Conference on Decision and Control (CDC) | ||||||||||||
Veranstaltungsort: | Austin, TX, USA | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 14 Dezember 2021 | ||||||||||||
Veranstaltungsende: | 17 Dezember 2021 | ||||||||||||
Veranstalter : | IEEE | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Roboterdynamik & Simulation [RO] | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Analyse und Regelung komplexer Robotersysteme Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||
Hinterlegt von: | Strobl, Dr. Klaus H. | ||||||||||||
Hinterlegt am: | 27 Jan 2023 14:49 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags