elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Deep learning based style transfer for low altitude aerial imagery

Pennino, Federico (2022) Deep learning based style transfer for low altitude aerial imagery. Master's, Universität Bielefeld.

[img] PDF
29MB

Abstract

Es wurde eine Simulationsumgebung entwickelt um parametrisiert synthetische Luftbildaufnahmen zum Training und Testen von Semantischen Neuronalen Netzen zu erstellen. Des weiteren wurde untersucht, ob generative adversarial networks genutzt werden können, um den Domain Gap zwischen echten und synthetischen Bildern zu verkleinern.

Item URL in elib:https://elib.dlr.de/193597/
Document Type:Thesis (Master's)
Title:Deep learning based style transfer for low altitude aerial imagery
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Pennino, FedericoUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:2022
Refereed publication:No
Open Access:Yes
Number of Pages:78
Status:Published
Keywords:GANs, UAV, Simualtion, Synthetic, Aerial Imagery
Institution:Universität Bielefeld
Department:Technische Fakultät
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Aeronautics
HGF - Program Themes:Components and Systems
DLR - Research area:Aeronautics
DLR - Program:L CS - Components and Systems
DLR - Research theme (Project):L - Unmanned Aerial Systems
Location: Köln-Porz
Institutes and Institutions:Institute of Software Technology
Institute of Software Technology > Intelligent and Distributed Systems
Deposited By: Konen, Kai
Deposited On:26 Jan 2023 11:10
Last Modified:26 Jan 2023 11:10

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.