Ebel, Patrick and Xu, Yajin and Schmitt, Michael and Zhu, Xiao Xiang (2022) Multi-Sensor Time Series Cloud Removal Fusing Optical and SAR Satellite Information. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 5381-5384. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883238.
PDF
3MB |
Official URL: https://ieeexplore.ieee.org/document/9883238
Abstract
On average, about half of all optical satellite data observing Earth is covered by haze or clouds. These atmospheric disturbances hinder the ongoing observation of our planet and prevent the seamless application of established remote sensing methods. Accordingly, to allow for an ongoing monitoring of Earth, approaches to reconstruct optical space-borne observations are required. This work introduces a new data set, SEN12MS-CR-TS, for the purpose of multi-sensor time series cloud removal. SEN12MS-CR-TS consists of co-registered radar and optical satellite data, featuring a se-quence of bi-weekly observations throughout an entire year. Finally, we demonstrate the usability of our novel data set by developing a new multi-sensor time-series cloud removal ar-chitecture. We are positive that our curated data set as well as the proposed model will advance future research in satellite image reconstruction and benefit the expanding adaptation of global and all-weather remote sensing applications.
Item URL in elib: | https://elib.dlr.de/193329/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Multi-Sensor Time Series Cloud Removal Fusing Optical and SAR Satellite Information | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883238 | ||||||||||||||||||||
Page Range: | pp. 5381-5384 | ||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | cloud removal | ||||||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||
Deposited On: | 16 Jan 2023 08:51 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:54 |
Repository Staff Only: item control page