Ebel, Patrick und Xu, Yajin und Schmitt, Michael und Zhu, Xiao Xiang (2022) Multi-Sensor Time Series Cloud Removal Fusing Optical and SAR Satellite Information. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 5381-5384. IEEE - Institute of Electrical and Electronics Engineers. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883238.
PDF
3MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9883238
Kurzfassung
On average, about half of all optical satellite data observing Earth is covered by haze or clouds. These atmospheric disturbances hinder the ongoing observation of our planet and prevent the seamless application of established remote sensing methods. Accordingly, to allow for an ongoing monitoring of Earth, approaches to reconstruct optical space-borne observations are required. This work introduces a new data set, SEN12MS-CR-TS, for the purpose of multi-sensor time series cloud removal. SEN12MS-CR-TS consists of co-registered radar and optical satellite data, featuring a se-quence of bi-weekly observations throughout an entire year. Finally, we demonstrate the usability of our novel data set by developing a new multi-sensor time-series cloud removal ar-chitecture. We are positive that our curated data set as well as the proposed model will advance future research in satellite image reconstruction and benefit the expanding adaptation of global and all-weather remote sensing applications.
elib-URL des Eintrags: | https://elib.dlr.de/193329/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Multi-Sensor Time Series Cloud Removal Fusing Optical and SAR Satellite Information | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883238 | ||||||||||||||||||||
Seitenbereich: | Seiten 5381-5384 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | cloud removal | ||||||||||||||||||||
Veranstaltungstitel: | IGARSS 2022 | ||||||||||||||||||||
Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||||||||||
Veranstaltungsende: | 22 Juli 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||
Hinterlegt am: | 16 Jan 2023 08:51 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags