Rashdan, Ibrahim und Sand, Stephan und jiang, suying und Wang, Wei und Caire, Giuseppe (2023) Non-Stationarity Analysis of Vehicle-to-Vulnerable Road Users Channel in Critical Scenarios. EuCAP 2023, 2023-03-26 - 2023-03-31, Florence, Italy. doi: 10.23919/EuCAP57121.2023.10133574.
PDF
- Nur DLR-intern zugänglich
4MB |
Kurzfassung
Direct vehicle-to-vulnerable road users (V2VRU) communication can prevent accidents by providing 360◦ awareness and improving detection, localization, and tracking of both vehicles and VRUs. Having a realistic channel is a prerequisite for developing a reliable V2VRU communication system. In order to parameterize a geometry-based stochastic channel model (GSCM), it is important to determine the length of local quasi-stationarity regions. Therefore, in this work, the non-stationarity of the V2VRU channel is analyzed by estimating the generalized local scattering function (GLSF) and its collinearity based on the channel measurement data. The estimated stationarity distance is presented for the three most critical accident scenarios in urban environment. We find that the observed rapid fluctuations of the stationarity distance are mainly caused by the sudden change in the Doppler domain at the collision point, strong multipath, and the blockage of the line of sight by parked vehicles.
elib-URL des Eintrags: | https://elib.dlr.de/193193/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Non-Stationarity Analysis of Vehicle-to-Vulnerable Road Users Channel in Critical Scenarios | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2023 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.23919/EuCAP57121.2023.10133574 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | V2VRU communication, V2P, vulnerable road users, channel model, non-stationarity, GLSF. | ||||||||||||||||||||||||
Veranstaltungstitel: | EuCAP 2023 | ||||||||||||||||||||||||
Veranstaltungsort: | Florence, Italy | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 26 März 2023 | ||||||||||||||||||||||||
Veranstaltungsende: | 31 März 2023 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - KoKoVI - Koordinierter kooperativer Verkehr mit verteilter, lernender Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||||||||||||||
Hinterlegt von: | Rashdan, Ibrahim | ||||||||||||||||||||||||
Hinterlegt am: | 23 Jan 2023 16:24 | ||||||||||||||||||||||||
Letzte Änderung: | 11 Jul 2024 14:03 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags