Li, Qingyu and Zorzi, Stefano and Shi, Yilei and Fraundorfer, Friedrich and Zhu, Xiao Xiang (2022) RegGAN: An End-to-End Network for Building Footprint Generation with Boundary Regularization. Remote Sensing, 14, p. 1835. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs14081835. ISSN 2072-4292.
PDF
- Published version
6MB |
Official URL: https://www.mdpi.com/2072-4292/14/8/1835/htm
Abstract
Accurate and reliable building footprint maps are of great interest in many applications, e.g., urban monitoring, 3D building modeling, and geographical database updating. When compared to traditional methods, the deep-learning-based semantic segmentation networks have largely boosted the performance of building footprint generation. However, they still are not capable of delineating structured building footprints. Most existing studies dealing with this issue are based on two steps, which regularize building boundaries after the semantic segmentation networks are implemented, making the whole pipeline inefficient. To address this, we propose an end-to-end network for the building footprint generation with boundary regularization, which is termed RegGAN. Our method is based on a generative adversarial network (GAN). Specifically, a multiscale discriminator is proposed to distinguish the input between false and true, and a generator is utilized to learn from the discriminator’s response to generate more realistic building footprints. We propose to incorporate regularized loss in the objective function of RegGAN, in order to further enhance sharp building boundaries. The proposed method is evaluated on two datasets with varying spatial resolutions: the INRIA dataset (30 cm/pixel) and the ISPRS dataset (5 cm/pixel). Experimental results show that RegGAN is able to well preserve regular shapes and sharp building boundaries, which outperforms other competitors.
Item URL in elib: | https://elib.dlr.de/192698/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | RegGAN: An End-to-End Network for Building Footprint Generation with Boundary Regularization | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | April 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 14 | ||||||||||||||||||||||||
DOI: | 10.3390/rs14081835 | ||||||||||||||||||||||||
Page Range: | p. 1835 | ||||||||||||||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | building footprint; semantic segmentation; generative adversarial network; regularization | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science Remote Sensing Technology Institute > Photogrammetry and Image Analysis | ||||||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||
Deposited On: | 20 Dec 2022 11:04 | ||||||||||||||||||||||||
Last Modified: | 19 Oct 2023 13:29 |
Repository Staff Only: item control page