Li, Qingyu und Zorzi, Stefano und Shi, Yilei und Fraundorfer, Friedrich und Zhu, Xiao Xiang (2022) RegGAN: An End-to-End Network for Building Footprint Generation with Boundary Regularization. Remote Sensing, 14, Seite 1835. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs14081835. ISSN 2072-4292.
PDF
- Verlagsversion (veröffentlichte Fassung)
6MB |
Offizielle URL: https://www.mdpi.com/2072-4292/14/8/1835/htm
Kurzfassung
Accurate and reliable building footprint maps are of great interest in many applications, e.g., urban monitoring, 3D building modeling, and geographical database updating. When compared to traditional methods, the deep-learning-based semantic segmentation networks have largely boosted the performance of building footprint generation. However, they still are not capable of delineating structured building footprints. Most existing studies dealing with this issue are based on two steps, which regularize building boundaries after the semantic segmentation networks are implemented, making the whole pipeline inefficient. To address this, we propose an end-to-end network for the building footprint generation with boundary regularization, which is termed RegGAN. Our method is based on a generative adversarial network (GAN). Specifically, a multiscale discriminator is proposed to distinguish the input between false and true, and a generator is utilized to learn from the discriminator’s response to generate more realistic building footprints. We propose to incorporate regularized loss in the objective function of RegGAN, in order to further enhance sharp building boundaries. The proposed method is evaluated on two datasets with varying spatial resolutions: the INRIA dataset (30 cm/pixel) and the ISPRS dataset (5 cm/pixel). Experimental results show that RegGAN is able to well preserve regular shapes and sharp building boundaries, which outperforms other competitors.
elib-URL des Eintrags: | https://elib.dlr.de/192698/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | RegGAN: An End-to-End Network for Building Footprint Generation with Boundary Regularization | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | April 2022 | ||||||||||||||||||||||||
Erschienen in: | Remote Sensing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 14 | ||||||||||||||||||||||||
DOI: | 10.3390/rs14081835 | ||||||||||||||||||||||||
Seitenbereich: | Seite 1835 | ||||||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | building footprint; semantic segmentation; generative adversarial network; regularization | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||
Hinterlegt am: | 20 Dez 2022 11:04 | ||||||||||||||||||||||||
Letzte Änderung: | 19 Okt 2023 13:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags