Kandala, Hitesh und Saha, Sudipan und Banerjee, Biplab und Zhu, Xiao Xiang (2022) Exploring Transformer and Multilabel Classification for Remote Sensing Image Captioning. IEEE Geoscience and Remote Sensing Letters, 19, Seite 6514905. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2022.3198234. ISSN 1545-598X.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9855519
Kurzfassung
High-resolution remote sensing images are now available with the progress of remote sensing technology. With respect to popular remote sensing tasks, such as scene classification, image captioning provides comprehensible information about such images by summarizing the image content in human-readable text. Most existing remote sensing image captioning methods are based on deep learning-based encoder–decoder frameworks, using convolutional neural network or recurrent neural network as the backbone of such frameworks. Such frameworks show a limited capability to analyze sequential data and cope with the lack of captioned remote sensing training images. Recently introduced Transformer architecture exploits self-attention to obtain superior performance for sequence-analysis tasks. Inspired by this, in this work, we employ a Transformer as an encoder–decoder for remote sensing image captioning. Moreover, to deal with the limited training data, an auxiliary decoder is used that further helps the encoder in the training process. The auxiliary decoder is trained for multilabel scene classification due to its conceptual similarity to image captioning and capability of highlighting semantic classes. To the best of our knowledge, this is the first work exploiting multilabel classification to improve remote sensing image captioning. Experimental results on the University of California (UC)-Merced caption dataset show the efficacy of the proposed method. The implementation details can be found in https://gitlab.lrz.de/ai4eo/captioningMultilabel .
elib-URL des Eintrags: | https://elib.dlr.de/192680/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Exploring Transformer and Multilabel Classification for Remote Sensing Image Captioning | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | August 2022 | ||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 19 | ||||||||||||||||||||
DOI: | 10.1109/LGRS.2022.3198234 | ||||||||||||||||||||
Seitenbereich: | Seite 6514905 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Auxiliary task, image captioning, multitask learning, remote sensing, Transformer | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||
Hinterlegt am: | 20 Dez 2022 10:07 | ||||||||||||||||||||
Letzte Änderung: | 19 Okt 2023 12:38 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags