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Abstract— High-resolution remote sensing images are now
available with the progress of remote sensing technology. With
respect to popular remote sensing tasks, such as scene classi-
fication, image captioning provides comprehensible information
about such images by summarizing the image content in human-
readable text. Most existing remote sensing image captioning
methods are based on deep learning-based encoder–decoder
frameworks, using convolutional neural network or recurrent
neural network as the backbone of such frameworks. Such
frameworks show a limited capability to analyze sequential data
and cope with the lack of captioned remote sensing training
images. Recently introduced Transformer architecture exploits
self-attention to obtain superior performance for sequence-
analysis tasks. Inspired by this, in this work, we employ a
Transformer as an encoder–decoder for remote sensing image
captioning. Moreover, to deal with the limited training data,
an auxiliary decoder is used that further helps the encoder
in the training process. The auxiliary decoder is trained for
multilabel scene classification due to its conceptual similarity
to image captioning and capability of highlighting semantic
classes. To the best of our knowledge, this is the first work
exploiting multilabel classification to improve remote sensing
image captioning. Experimental results on the University of
California (UC)-Merced caption dataset show the efficacy of
the proposed method. The implementation details can be found
in https://gitlab.lrz.de/ai4eo/captioningMultilabel.
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I. INTRODUCTION

REMOTE sensing technology has made significant
progress in the last decade, thus making high-quality

remote sensing images available from a plethora of sen-
sors. Despite this, the commonly studied remote sensing
tasks, e.g., image segmentation and change detection, usually
focus on object-level or pixel-level understanding without
comprehensive semantic knowledge. Toward capturing more
comprehensive global semantic information, image caption-
ing is introduced in remote sensing that can generate intu-
itive textual descriptions summarizing the high-level semantic
information [1], [2].

Image captioning is a challenging task, as it involves both
understanding the content of the image and translating it to
natural language. Early remote sensing image caption meth-
ods used template-based and retrieval-based models [3], [4].
Subsequently, they have been replaced by encoder–decoder-
based methods. More recently, the visual attention mecha-
nism has also been explored [5]. The Transformer further
exploits the attention mechanism to model the sequence depen-
dency and excludes the usage of recurrent units [6], [7].
In addition to traditional computer vision tasks, such as
segmentation [8], Transformer-based architectures have also
been adopted for computer vision image captioning [9]. Their
works show the superior capability of Transformers to utilize
long-range dependencies among the sequenced patches via the
self-attention mechanism.

While Transformer can potentially improve image caption-
ing [10], their performance may fall when sufficient train-
ing data are not available, as observed in [11]. Notably,
the remote sensing image captioning datasets (RSICDs) are
much smaller than those available in computer vision. Aux-
iliary/supplemental tasks and multitask learning are used to
alleviate the lack of large training data by providing addi-
tional supervision, i.e., simultaneously using the same data
for a different supplemental learning task during the training
procedure [12]. The intuition behind their success is that the
network learns to generalize better by adapting to multiple
tasks. Such supplemental tasks are usually collected from
related tasks; e.g., [13] uses image classification as an auxiliary
task while generating synthetic images, and [14] explores
multitask learning for human settlement extent regression
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Fig. 1. Image with its caption and multilabel data, and the relationship
between them is evident.

and local climate zone classification. Supplemental tasks can
be both supervised [13] and unsupervised [15]. They have
been used in several works related to image captioning in
computer vision [16], [17]. Zhao et al. [16] used three related
tasks of image captioning, multilabel classification, and syntax
generation using the CNN-long short-term memory (LSTM)
model, where all the three tasks share the CNN encoder,
and the first and the last tasks share the LSTM decoder.
Zhou et al. [17] jointly tackles two related visual-text tasks of
image captioning and visual question answering. While syntax
or visual question answers are not abundantly available in
remote sensing, image labels are easily available. Furthermore,
multilabel classification and image captions are conceptually
similar [18], as both highlight the semantic classes, evident in
the example shown in Fig. 1. Motivated by this, we propose
to use multilabel image classification as a supplemental task
along with Transformer-based remote sensing caption gener-
ation. Any other task, e.g., rotation prediction, could be used
in practice. However, those tasks are focused on getting better
discriminative visual features and do not highlight the semantic
meaning, unlike multilabel classification, which makes the
appropriate choice as a supplemental task to regulate the cap-
tion generation. Our proposed model benefits from the superior
capability of the Transformer to exploit sequence information
and the capability of multitask learning to perform training
with limited data. The contributions of our work are as follows.

1) We propose a novel remote sensing image caption gen-
eration model that exploits recently popular Transformer
architecture along with multilabel classification as a
supplemental task. To the best of our knowledge, this
is the first work jointly tackling multilabel classification
and remote sensing image captioning.

2) We compare our method not only to the existing meth-
ods but also to other auxiliary tasks, showing that the
chosen auxiliary task is most suitable for regulating the
Transformer-based model.

II. PROPOSED APPROACH

A. Methodology
Given a remote sensing image I , remote sensing captioning

generates its textual description—S : S1, S2, . . . , SN , where N
is the total number of words in the sentence S. In practice,
the training process is accomplished by training a model with
model parameters θ1 that maximizes the probability of the
generated caption S given the input image I .

The proposed model is trained with the abovemen-
tioned objective function using a Transformer-based encoder.
(Section II-B)and Transformer-based decoder (Section II-C).
In addition, we use an auxiliary LSTM-based decoder
(Section II-D) that ingests the bottleneck features directly

Fig. 2. Proposed multitask network, with a common transformer encoder
and two decoders, one for caption generation and the other for multilabel
classification.

from encoder and performs multilabel classification. The aux-
iliary decoder is trained to optimize the parameters θ2 given
input image I and its ground-truth (GT) corresponding
labels y1, y2, . . . , yM . Note that parameters θ1 and θ2 share
the encoder weights. The two tasks—caption generation
and classification—are regulated by different loss functions,
as described in Section II-E. The proposed framework is shown
in Fig. 2.

B. Encoder

Encoders, mainly as an encoder–decoder pair, have seen
their usage in different tasks, including autoencoder-based
reconstruction and sequence-to-sequence learning tasks [19].
In general, the encoder part is composed of a sequence of
convolution, pooling, and batch normalization layers to learn
a concise feature representation of the whole image. Simi-
larly, in sequence-to-sequence learning tasks, CNN layers are
substituted by LSTM layers [19]. In this regard, Transformer
encoders have been shown to learn better sequence feature
representation than the LSTM. Also, recent advances have
shown it to learn a rich feature space for images by exploiting
its self-attention layers and highlighting the relevant parts of
the image [6].

We use the combination of a CNN-based feature extractor
that gives us a higher-level semantic feature and a Transformer
encoder to get a good feature representation of the image.
Since we have limited data, this combinatorial approach is
suitable. As shown in Fig. 2, we split the image into 8 × 8 grid
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tiles and extract features for each tile using Inception v3 [20],
extracting features after the mixed-seven layer. Since CNN
gives us higher-level semantic features for the image, extracted
features can be seen as a sequence representation. Instead
of positional encoding, we do a spatial encoding based on
the tile’s position. In this way, we have the original image,
except that it is replaced by a much higher representation.
This is then passed through the multihead attention layers of
Transformer for the extracted features to learn dependency
on each other and give importance to relevant parts in the
image. The multihead attention allows the model to attend to
information from different representation subspaces at differ-
ent positions. Thus, by the combination of Inception v3-based
feature extraction and Transformer, we obtain a high-level
semantic representation of the image while taking care of
its spatial information and simultaneously building deeper
relationships between the two using the self-attention heads
of the Transformer.

The encoding component of the Transformer [6] is com-
posed of a stack of encoders. While all the encoders are
identical, they can be broken down into positional encoding,
self-attention, and feedforward network layers. In the case
of image input, the position of a tile in the image plays a
determining role in understanding the sequence of the image
that is imposed through a positional encoding layer. Output
from the positional encoding layer goes to the self-attention
layer. The self-attention mechanism computes the score by
taking the dot product of the query vector with the key
vector. This score is appropriately scaled and passed through
the softmax layer to get the scores as probabilities. This
attention mechanism can also be described as scaled dot-
product attention [6]. The output from multihead attention
is fed to the feedforward network. Since the feedforward
layer expects only a single matrix (a vector for each word),
the output obtained from multiple heads of self-attention is
combined by additional weights. The output of the last encoder
is transformed into key and value vectors, which are used by
the decoder in its encoder–decoder attention layer.

For text encoding, we do not use any pre-trained model.
We use byte pair encoding—subword-neural machine trans-
lation (NMT)—to build the vocabulary (dictionary) and use
Moses tokenizer for captions.

C. Decoder

As mentioned previously, encoder–decoder pairs work
hand-in-hand in sequence analysis tasks. Traditional LSTM
decoders learn the feature representation by taking input
in a sequential manner, limiting the efficiency of learning
the long dependencies. Therefore, for the task of image
captioning, we use a Transformer decoder that ingests the
whole sentence at a time and uses its stacked self-attention
layers to solve the abovementioned problem of learning long
dependencies.

The Transformer decoder has similar architecture to the
encoder. The output from the encoder is fed to the decoder
using an encoder–decoder attention layer that works just like
the multiheaded self-attention layer. Decoder layers use a
masked self-attention sublayer to allow the model to attend to

only earlier positions in the output sequence by masking the
future positions. The decoder stack outputs are finally passed
through a linear layer to produce a vocabulary size vector.
This vector represents the probability of each word in the
vocabulary being the following word in the sentence. In short,
the decoder tries to find the probability of the next word, given
the previous words and the spatial and semantic information.

D. Auxiliary Decoder

While our primary task is to generate captions for the input
remote sensing images, we use multilabel classification as a
supplemental task that helps us in improving the primary task
by regularizing the features learned by the Transformer-based
encoder. The output from the Transformer-based encoder is
directly fed to the auxiliary decoder, bypassing the Trans-
former decoder. The encoder generates a high-level repre-
sentation of the image packed in an embedded vector. For
multilabel classification, we essentially need to decode this
vector, as mentioned earlier, into labels to classify. So, for
this task, we use a simple LSTM decoder to generate a feature
vector, which is then passed through a sigmoid layer to obtain
probabilities of labels.

To describe the setting of multitask learning, we reiterate the
frameworks mentioned earlier and their combined flow. First,
the image is fed into the encoder, which generates a rich and
compact feature representation. At the same time, the sentence
is passed through a masked self-attention layer to generate
words sequentially. The output from the encoder goes to both
the decoders. The transformer decoder uses the encoder output
to learn codependencies between the text and the semantic
information. While in the auxiliary decoder, it decodes the
vector at every time step, which is then concatenated with
the input at the next time step and then decoded again to
generate a rich feature vector, which when passed through
sigmoid generates a multilabel prediction ŷ1, ŷ2, . . . , ˆyM for
the image.

The model architecture is tabulated in Table I.

E. Loss Functions

For training the image captioning decoder, we use label-
smoothed cross-entropy loss L1

L1 = (1 − ε)

(
−

N∑
i=1

log(p(Si |S1, . . . , Si−1))

)
+ ε

K
β (1)

where ε is a weight factor, β is the smooth loss, and K is
the vocab size. β/K is the label smoothing loss [21], which
tries to make one-hot label vector into a uniformly distributed
vector to prevent model from overfitting and overconfidence.

For training the multilabel classification decoder, we use
binary cross-entropy loss L2

L2 = − 1

M

M∑
i=1

yi log(ŷi) + (1 − yi) log(1 − ŷi). (2)

We alternate between both the losses randomly at every
mini-batch, which after some epochs generalizes to tak-
ing backpropagation through both the losses simultaneously.
Alternatively, a combined weighted loss can be used.
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TABLE I

MODEL FRAMEWORK: FEATURES EXTRACTED FROM INCEPTION V3 ARE
FED TO TRANSFORMER-BASED ENCODER, THE OUTPUT FROM WHICH

IS FED TO TWO DECODERS, ONE BASED ON TRANSFORMER FOR

GENERATING CAPTION AND THE OTHER BASED ON LSTM
FOR GENERATING MULTICLASS LABELS

F. Overheads Over Traditional Captioning

Compared with the existing image captioning methods,
the proposed method requires multilabel scene labels for the
training images. However, compared with the target task, i.e.,
captioning, it is much less challenging to obtain scene labels,
and both can be annotated simultaneously in any practical
setting. Moreover, such labels are only required for training.
For test/deployment, we do not require any prior knowledge
about image labels. The overhead for computation time is
negligible, as both decoders can be trained simultaneously.

III. EXPERIMENTAL VALIDATION

A. Test Dataset

We used the University of California (UC)-Merced captions
dataset for experimental validation, extending the popular UC-
Merced dataset. The UC-Merced dataset is a 21-class land use
remote sensing image dataset, with 100 images per class. The
images were manually extracted from large images from the
United States Geological Survey (USGS) National Map Urban
Area Imagery collection for various urban areas around the
country [22]. The pixel resolution of this dataset is 0.3 m/pixel.
Most images in the dataset are 256 × 256 pixels. The dataset
was extended for multilabel classification in [23], with up to
seven labels per image.

The UC-Merced captions dataset, introduced in [3],
extended the UC-Merced dataset with five reference sentences
per image. In the experiments, we have used 80% image
captions as training data and 10% as validation data, and the
rest 10% is used as test data.

Please note that other datasets, such as RSICD [1], are not
suitable for our evaluation, as they do not have multiclass
labels.

B. Compared Methods

To verify whether both Transformer-based architecture and
auxiliary task-based training provide benefits, we compare the
proposed method to both single-task networks and multitask
learning with different auxiliary tasks.

Single-task networks compared are as follows: 1) LSTM
(C) network, a CNN encoder and LSTM decoder model
for image captioning and 2) Transformer (C) network, an
encoder–decoder transformer model for image captioning.
We also compare a variant of the proposed method with an
LSTM-based decoder, LSTM (C + L) network, a model, con-
sisting of a common CNN encoder and two LSTM decoders
for image captioning and multilabel classification.

Fig. 3. Generated captions; the second column lists the captions generated
w/o the use of multitask learning; the third column lists the captions generated
from the proposed method, and the last column lists the GT captions. Our
proposed model generates exact captions as GT for some images, semantically
more meaningful captions sentences compared to without multitask learning.

We compare image reconstruction as an auxiliary task
instead of the proposed auxiliary task. For this, we use the
same architecture as the proposed method, except a CNN
decoder for image reconstruction.

We further compare two recently introduced remote sensing
image captioning methods: 1) scene attention-based method
introduced in [24] and 2) multilabel attention in [5], and
Transformer + reinforcement learning-based method [11].

C. Result

The proposed method can obtain meaningful textual
descriptions of the remote sensing images, as shown in Fig. 3.
A quantitative analysis of the results is tabulated in Table II.
Results are shown using different popular indices, Bleu-
1, Bleu-2, Bleu-3, Bleu-4, metric for evaluation of transla-
tion with explicit ordering (METEOR), recall-oriented under-
study for gisting evaluation - longest common subsequence
(ROUGE-L), and consensus-based image description evalua-
tion (CIDEr) [25].

LSTM (C + L) outperforms LSTM (C), showing that mul-
tilabel classification as an auxiliary task is indeed helpful in
improving the captioning, even for simpler LSTM-based archi-
tecture. Transformer (C) (i.e., transformer without an auxiliary
task) performs similar to LSTM (C + L). Performance drops
when using trivial auxiliary tasks, i.e., image reconstruction
or angle prediction. This shows that such auxiliary tasks are
not consistent with our primary task, i.e., image captioning.
However, the proposed method (i.e., using multilabel classi-
fication as an auxiliary task) significantly improves the result
over LSTM (C), LSTM (C + L), Transformer (C), and scene
attention-based method.
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TABLE II

QUANTITATIVE COMPARISON OF THE PROPOSED METHOD WITH DIFFERENT EXISTING FRAMEWORKS AND STATE-OF-THE-ART METHODS

Overall, we observe the following.

1) The Transformer-based model is beneficial compared
with the LSTM-based model, as evident from the
improved result of Transformer (C) in comparison with
LSTM (C).

2) Multilabel classification as an auxiliary task is use-
ful, as evident from the improved result of LSTM
(C + L) in comparison with LSTM (C) and improved
performance of the proposed model in comparison with
Transformer (C).

3) Unsupervised auxiliary tasks, such as rotation, are not
suitable for image captioning, as such tasks are seman-
tically different from the primary task of captioning.

4) The proposed method does not need an additional
step of reinforcement learning; however, it still obtains
similar performance to Transformer + reinforcement
learning.

IV. CONCLUSION

We presented a multitask model for remote sensing image
captioning. Specifically, we chose multilabel classification as
an auxiliary task to improve image captioning. The chosen
auxiliary task is semantically similar to our primary task
of image captioning. Our experiments show that it helps
improve image captioning by outperforming single-task mod-
els. Though this is true for any choice of architecture that
we may have, we provide evidence to show the superior-
ity of Transformer-based architecture. Our future work will
be toward a comprehensive summarizing of remote sensing
time series by designing datasets and extending the proposed
method for such time series.
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