Xu, Fang and Shi, Yilei and Ebel, Patrick and Yu, Lei and Xia, Gui-Song and Yang, Wen and Zhu, Xiao Xiang (2022) GLF-CR: SAR-enhanced cloud removal with global–local fusion. ISPRS Journal of Photogrammetry and Remote Sensing, 192, pp. 268-278. Elsevier. doi: 10.1016/j.isprsjprs.2022.08.002. ISSN 0924-2716.
PDF
- Published version
4MB |
Official URL: https://www.sciencedirect.com/science/article/pii/S0924271622002064
Abstract
The challenge of the cloud removal task can be alleviated with the aid of Synthetic Aperture Radar (SAR) images that can penetrate cloud cover. However, the large domain gap between optical and SAR images as well as the severe speckle noise of SAR images may cause significant interference in SAR-based cloud removal, resulting in performance degeneration. In this paper, we propose a novel global–local fusion based cloud removal (GLF-CR) algorithm to leverage the complementary information embedded in SAR images. Exploiting the power of SAR information to promote cloud removal entails two aspects. The first, global fusion, guides the relationship among all local optical windows to maintain the structure of the recovered region consistent with the remaining cloud-free regions. The second, local fusion, transfers complementary information embedded in the SAR image that corresponds to cloudy areas to generate reliable texture details of the missing regions, and uses dynamic filtering to alleviate the performance degradation caused by speckle noise. Extensive evaluation demonstrates that the proposed algorithm can yield high quality cloud-free images and outperform state-of-the-art cloud removal algorithms with a gain about 1.7 dB in terms of PSNR on SEN12MS-CR dataset.
Item URL in elib: | https://elib.dlr.de/192675/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||||||
Title: | GLF-CR: SAR-enhanced cloud removal with global–local fusion | ||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||
Date: | October 2022 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||||||
Volume: | 192 | ||||||||||||||||||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2022.08.002 | ||||||||||||||||||||||||||||||||
Page Range: | pp. 268-278 | ||||||||||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||
Keywords: | Cloud removal, Data fusion, SAR, Transformer | ||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||||||||||
Deposited On: | 20 Dec 2022 09:57 | ||||||||||||||||||||||||||||||||
Last Modified: | 06 Feb 2024 09:15 |
Repository Staff Only: item control page