Xu, Fang und Shi, Yilei und Ebel, Patrick und Yu, Lei und Xia, Gui-Song und Yang, Wen und Zhu, Xiao Xiang (2022) GLF-CR: SAR-enhanced cloud removal with global–local fusion. ISPRS Journal of Photogrammetry and Remote Sensing, 192, Seiten 268-278. Elsevier. doi: 10.1016/j.isprsjprs.2022.08.002. ISSN 0924-2716.
PDF
- Verlagsversion (veröffentlichte Fassung)
4MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0924271622002064
Kurzfassung
The challenge of the cloud removal task can be alleviated with the aid of Synthetic Aperture Radar (SAR) images that can penetrate cloud cover. However, the large domain gap between optical and SAR images as well as the severe speckle noise of SAR images may cause significant interference in SAR-based cloud removal, resulting in performance degeneration. In this paper, we propose a novel global–local fusion based cloud removal (GLF-CR) algorithm to leverage the complementary information embedded in SAR images. Exploiting the power of SAR information to promote cloud removal entails two aspects. The first, global fusion, guides the relationship among all local optical windows to maintain the structure of the recovered region consistent with the remaining cloud-free regions. The second, local fusion, transfers complementary information embedded in the SAR image that corresponds to cloudy areas to generate reliable texture details of the missing regions, and uses dynamic filtering to alleviate the performance degradation caused by speckle noise. Extensive evaluation demonstrates that the proposed algorithm can yield high quality cloud-free images and outperform state-of-the-art cloud removal algorithms with a gain about 1.7 dB in terms of PSNR on SEN12MS-CR dataset.
elib-URL des Eintrags: | https://elib.dlr.de/192675/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | GLF-CR: SAR-enhanced cloud removal with global–local fusion | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | Oktober 2022 | ||||||||||||||||||||||||||||||||
Erschienen in: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
Band: | 192 | ||||||||||||||||||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2022.08.002 | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 268-278 | ||||||||||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Cloud removal, Data fusion, SAR, Transformer | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 20 Dez 2022 09:57 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 06 Feb 2024 09:15 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags