Doda, Sugandha and Wang, Yuanyuan and Kahl, Matthias and Hoffmann, Eike Jens and Ouan, Kim and Taubenböck, Hannes and Zhu, Xiao Xiang (2022) So2Sat POP - A Curated Benchmark Data Set for Population Estimation from Space on a Continental Scale. Scientific Data, 9, 715_1-715_11. Nature Publishing Group. doi: 10.1038/s41597-022-01780-x. ISSN 2052-4463.
PDF
- Published version
2MB |
Official URL: https://www.nature.com/articles/s41597-022-01780-x
Abstract
Obtaining a dynamic population distribution is key to many decision-making processes such as urban planning, disaster management and most importantly helping the government to better allocate socio-technical supply. For the aspiration of these objectives, good population data is essential. The traditional method of collecting population data through the census is expensive and tedious. In recent years, statistical and machine learning methods have been developed to estimate population distribution. Most of the methods use data sets that are either developed on a small scale or not publicly available yet. Thus, the development and evaluation of new methods become challenging. We fill this gap by providing a comprehensive data set for population estimation in 98 European cities. The data set comprises a digital elevation model, local climate zone, land use proportions, nighttime lights in combination with multi-spectral Sentinel-2 imagery, and data from the Open Street Map initiative. We anticipate that it would be a valuable addition to the research community for the development of sophisticated approaches in the field of population estimation.
Item URL in elib: | https://elib.dlr.de/192673/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||||||
Title: | So2Sat POP - A Curated Benchmark Data Set for Population Estimation from Space on a Continental Scale | ||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||
Date: | November 2022 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | Scientific Data | ||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||||||
Volume: | 9 | ||||||||||||||||||||||||||||||||
DOI: | 10.1038/s41597-022-01780-x | ||||||||||||||||||||||||||||||||
Page Range: | 715_1-715_11 | ||||||||||||||||||||||||||||||||
Publisher: | Nature Publishing Group | ||||||||||||||||||||||||||||||||
ISSN: | 2052-4463 | ||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||
Keywords: | data sets, population estimation, digital elevation model, local climate zone, land use proportions, nighttime lights | ||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||||||||||
Deposited By: | Haschberger, Dr.-Ing. Peter | ||||||||||||||||||||||||||||||||
Deposited On: | 20 Dec 2022 09:56 | ||||||||||||||||||||||||||||||||
Last Modified: | 29 Mar 2023 00:03 |
Repository Staff Only: item control page