Diniz Dal Molin Junior, Ricardo Simao and Rizzoli, Paola (2022) Potential of Convolutional Neural Networks for Forest Mapping Using Sentinel-1 Interferometric Short Time Series. Remote Sensing, 14 (6). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs14061381. ISSN 2072-4292.
![]() |
PDF
- Published version
12MB |
Item URL in elib: | https://elib.dlr.de/192483/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||
Title: | Potential of Convolutional Neural Networks for Forest Mapping Using Sentinel-1 Interferometric Short Time Series | ||||||||||||
Authors: |
| ||||||||||||
Date: | 12 March 2022 | ||||||||||||
Journal or Publication Title: | Remote Sensing | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | Yes | ||||||||||||
Gold Open Access: | Yes | ||||||||||||
In SCOPUS: | Yes | ||||||||||||
In ISI Web of Science: | Yes | ||||||||||||
Volume: | 14 | ||||||||||||
DOI: | 10.3390/rs14061381 | ||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||
ISSN: | 2072-4292 | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | Synthetic Aperture Radar; Sentinel-1; forest mapping; deforestation monitoring; deep learning; convolutional neural networks | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Space | ||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||
DLR - Research theme (Project): | R - AI4SAR | ||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||
Institutes and Institutions: | Microwaves and Radar Institute Microwaves and Radar Institute > Spaceborne SAR Systems | ||||||||||||
Deposited By: | Diniz Dal Molin Junior, Ricardo Simao | ||||||||||||
Deposited On: | 19 Dec 2022 06:16 | ||||||||||||
Last Modified: | 19 Dec 2022 06:16 |
Repository Staff Only: item control page