Diniz Dal Molin Junior, Ricardo Simao and Rizzoli, Paola (2022) Potential of Convolutional Neural Networks for Forest Mapping Using Sentinel-1 Interferometric Short Time Series. Remote Sensing, 14 (6). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs14061381. ISSN 2072-4292.
|
PDF
- Published version
12MB |
| Item URL in elib: | https://elib.dlr.de/192483/ | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Document Type: | Article | ||||||||||||
| Title: | Potential of Convolutional Neural Networks for Forest Mapping Using Sentinel-1 Interferometric Short Time Series | ||||||||||||
| Authors: |
| ||||||||||||
| Date: | 12 March 2022 | ||||||||||||
| Journal or Publication Title: | Remote Sensing | ||||||||||||
| Refereed publication: | Yes | ||||||||||||
| Open Access: | Yes | ||||||||||||
| Gold Open Access: | Yes | ||||||||||||
| In SCOPUS: | Yes | ||||||||||||
| In ISI Web of Science: | Yes | ||||||||||||
| Volume: | 14 | ||||||||||||
| DOI: | 10.3390/rs14061381 | ||||||||||||
| Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||
| ISSN: | 2072-4292 | ||||||||||||
| Status: | Published | ||||||||||||
| Keywords: | Synthetic Aperture Radar; Sentinel-1; forest mapping; deforestation monitoring; deep learning; convolutional neural networks | ||||||||||||
| HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
| HGF - Program: | Space | ||||||||||||
| HGF - Program Themes: | Earth Observation | ||||||||||||
| DLR - Research area: | Raumfahrt | ||||||||||||
| DLR - Program: | R EO - Earth Observation | ||||||||||||
| DLR - Research theme (Project): | R - AI4SAR | ||||||||||||
| Location: | Oberpfaffenhofen | ||||||||||||
| Institutes and Institutions: | Microwaves and Radar Institute Microwaves and Radar Institute > Spaceborne SAR Systems | ||||||||||||
| Deposited By: | Diniz Dal Molin Junior, Ricardo Simao | ||||||||||||
| Deposited On: | 19 Dec 2022 06:16 | ||||||||||||
| Last Modified: | 19 Oct 2023 13:39 |
Repository Staff Only: item control page