elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Identifying causality drivers and deriving governing equations of nonlinear complex systems

Ma, Haochun und Haluszczynski, Alexander und Prosperino, Davide und Räth, Christoph (2022) Identifying causality drivers and deriving governing equations of nonlinear complex systems. Chaos, 32, Seite 103128. American Institute of Physics (AIP). doi: 10.1063/5.0102250. ISSN 1054-1500.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://aip.scitation.org/doi/full/10.1063/5.0102250

Kurzfassung

Identifying and describing the dynamics of complex systems is a central challenge in various areas of science, such as physics, finance, or climatology. While machine learning algorithms are increasingly overtaking traditional approaches, their inner workings and, thus, the drivers of causality remain elusive. In this paper, we analyze the causal structure of chaotic systems using Fourier transform surrogates and three different inference techniques: While we confirm that Granger causality is exclusively able to detect linear causality, transfer entropy and convergent cross-mapping indicate that causality is determined to a significant extent by nonlinear properties. For the Lorenz and Halvorsen systems, we find that their contribution is independent of the strength of the nonlinear coupling. Furthermore, we show that a simple rationale and calibration algorithm are sufficient to extract the governing equations directly from the causal structure of the data. Finally, we illustrate the applicability of the framework to real-world dynamical systems using financial data before and after the COVID-19 outbreak. It turns out that the pandemic triggered a fundamental rupture in the world economy, which is reflected in the causal structure and the resulting equations.

elib-URL des Eintrags:https://elib.dlr.de/191798/
Dokumentart:Zeitschriftenbeitrag
Titel:Identifying causality drivers and deriving governing equations of nonlinear complex systems
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ma, HaochunAGI / LMUNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Haluszczynski, AlexanderAGINICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Prosperino, DavideAGINICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Räth, ChristophChristoph.Raeth (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:31 Oktober 2022
Erschienen in:Chaos
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:32
DOI:10.1063/5.0102250
Seitenbereich:Seite 103128
Verlag:American Institute of Physics (AIP)
ISSN:1054-1500
Status:veröffentlicht
Stichwörter:complex systems, time series analysis, causalities, surrogates, stock market, covid-19
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D KIZ - Künstliche Intelligenz
DLR - Teilgebiet (Projekt, Vorhaben):D - PISA, D - Kurzstudien [DAT]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für KI-Sicherheit
Hinterlegt von: Räth, Christoph
Hinterlegt am:21 Dez 2022 10:46
Letzte Änderung:01 Nov 2023 03:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.