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ABSTRACT

Identifying and describing the dynamics of complex systems is a central challenge in various areas of science, such as physics, finance, or
climatology. While machine learning algorithms are increasingly overtaking traditional approaches, their inner workings and, thus, the drivers
of causality remain elusive. In this paper, we analyze the causal structure of chaotic systems using Fourier transform surrogates and three
different inference techniques: While we confirm that Granger causality is exclusively able to detect linear causality, transfer entropy and
convergent cross-mapping indicate that causality is determined to a significant extent by nonlinear properties. For the Lorenz and Halvorsen
systems, we find that their contribution is independent of the strength of the nonlinear coupling. Furthermore, we show that a simple rationale
and calibration algorithm are sufficient to extract the governing equations directly from the causal structure of the data. Finally, we illustrate
the applicability of the framework to real-world dynamical systems using financial data before and after the COVID-19 outbreak. It turns
out that the pandemic triggered a fundamental rupture in the world economy, which is reflected in the causal structure and the resulting
equations.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0102250

Understanding cause–effect relationships is a key challenge in

many areas of science, as it forms the basis for developing ana-

lytical and predictive models. However, while methods for causal

inference are constantly evolving, finding the drivers of causality

is a critical aspect that is often not adequately addressed. Particu-

larly when analyzing complex nonlinear systems, it is very useful

to know whether causality stems from linear or nonlinear proper-

ties. In this work, we separate the causality in linear and nonlinear

contributions and observe that a significant part can be attributed

to nonlinear properties. Furthermore, we present a framework by

which knowledge of the causal structure can be directly translated

into equations that describe the underlying data. Potentially, this

methodology can be used to find equations for real systems that

allow for precise analysis and prediction.

I. INTRODUCTION

Causality, as one of the basic principles of scientific thought,
has been intensively researched over many generations and dif-
ferent disciplines. Throughout history, interpretations of causality
have evolved with the increasing effort and complexity of physical
theories. While in Newton’s classical understanding action and reac-
tion were defined as simultaneously coupled, Einstein introduced
a temporal and spatial component by defining causality as events
connected by the cone of light.1 Subsequently, the disruption of
quantum mechanics led to a probability-dominated understanding
of physics, where causality is an unimaginable concept in a non-
deterministic world. With the advent of chaos theory, causality was
placed in the context of stability and equilibria of dynamical systems,
which became known to the general public as the butterfly effect.2
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Encouraged by the explosion of computation resources, the
development of causal inference methods took a similar but accel-
erated path. Beginning with Granger causality in the 1960s,3

many techniques of increasing complexity were developed, ranging
from information-theoretic measures4 to state-space reconstruction
methods;5 Runge6 provides an excellent overview.

However, while causal inference is primarily concerned with
measuring the presence of causality, research on its properties and
drivers has remained secondary. A first step in this direction was
taken by Paluš et al.7 who developed a diagnostic test for identify-
ing nonlinear dynamic relationships in time series based on mutual
information. Another approach, using Fourier transform surro-
gates, was taken by Haluszczynski et al.,8 who separated linear and
nonlinear contributions of mutual information to capture nonlin-
ear correlations in financial data. The contribution of nonlinearity
to connectivity in climate data was quantified by Hlinka et al.9

While initial approaches for deriving governing equations from
data in the 1990s were based on applying the flow method by inter
alia Breeden and Hübler10 and Eisenhammer et al.,11 research on
this topic has expanded considerably in the last few decades. In
the context of nonlinear dynamical systems, Brunton et al.12 intro-
duced sparse identification on the chaotic Lorenz attractor. Other
techniques include automated inference of dynamics13 and machine
learning approaches.14

In this work, we combine the inference and analysis of causal-
ity with the derivation of governing equations in nonlinear complex
systems. Therefore, we separate the linear and nonlinear contribu-
tions to causality using Fourier transform surrogates and develop
a transparent rationale based only on the causalities to derive the
differential equations.

II. BENCHMARK MODELS

In this work, we first validate our approach on four syn-
thetic systems before demonstrating its applicability on a real-world
example. If not stated otherwise, we solve the differential equa-
tions of the synthetic system using the Runge–Kutta method15 for

T = 10 000 steps and a discretization of dt = 0.01. We discard the
initial transient of T = 50 000 steps for the analyses.

A. Lorenz system

In order to analyze the effect of nonlinearity on the causal-
ity structure, we introduce two additional parameters λ1 and λ2 to
control the nonlinear terms of the Lorenz system, which models
atmospheric convection,16

dx

dt
= σ(y − x),

dy

dt
= x(ρ − λ1z)− y,

dz

dt
= λ2xy − βz,

(1)

where the standard parametrization is σ = 10, ρ = 28, β = 8/3,
and λ1 = λ2 = 1. The implied linear and nonlinear connections
between the variables are depicted in Fig. 1.

Figure 2 illustrates the attractor for a selection of different
parameter configurations: While the system diverges for nonlin-
earity degrees less or equal to 0, the upper bounds can be chosen
arbitrarily as we do not observe significant changes to the butterfly
form even for extreme values (λ1, λ2 ≈ 1000).

B. Halvorsen system

While the nonlinearity terms of the Lorenz system are mixed
products of two different variables, the circulant Halvorsen system17

entails quadratic nonlinearities,

dx

dt
= ax − 4y − 4z − λy2,

dy

dt
= ay − 4z − 4x − λz2,

dz

dt
= az − 4x − 4y − λx2,

(2)

where a = 1.3 and λ = 1 are the standard parameters.

FIG. 1. Causality pictogram of the Lorenz (left) and Halvorsen (right) system. The linear (lin) and nonlinear (nl) causal links are depicted by the labeled arrows.
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FIG. 2. Lorenz (top row) and Halvorsen (bottom row) attractors for different degrees of nonlinearity. While the standard parameters for the Lorenz system are set at σ = 10,
β = 8/3,ρ = 28, the nonlinearity parameters from left to right areλ1 = λ2 = 0.01,λ1 = λ2 = 1, andλ1 = λ2 = 2. For the Halvorsen system, the nonlinearity parameters
from left to right are λ = 0.01, 1, 2.

Analogously, we control the nonlinearity strength through the
additional parameter λ. As observed for the Lorenz system, the basic
form of the Halvorsen attractor also stays intact for variations in
nonlinearity, as illustrated in Fig. 2.

C. Fully linear system

In order to verify that a fully linear system leads to only linear
causality to be detected, we include the following system into our
analysis:

dx

dt
= sin(y),

dy

dt
= x + z,

dz

dt
= x − y.

(3)

We would like to point out that purely linear systems do not
exhibit chaotic behavior and that this system serves solely as a verifi-
cation of our methods. The time series for the first T = 30 000 steps
after the initial transient are shown in Fig. 3.

D. Fully nonlinear system

In contrast, we also include a fully nonlinear system specified
by the following equations:18

dx

dt
= αyz,

dy

dt
= 1 − z2,

dz

dt
= βx3 + yz,

(4)

where we set α = β = 1 for chaotic behavior. The attractor of this
system is depicted in Fig. 3.

E. Stock indices

In order to demonstrate the applicability of our framework to
real-world systems, we consider the global financial market around
the outbreak of the COVID-19 pandemic. Therefore, we choose the
six major economies and their corresponding MSCI stock indices
between November 2018 and May 2021: Europe (EU), United States
(US), China (CN), Emerging Markets (EE), Japan (JP), and Pacific
excluding Japan (PX). We convert the daily prices pt to log-returns,

xt ≡ log pt − log pt−1, (5)

and divide the series into two phases: the time before the outbreak
of the pandemic in February 2020 and the time after. This yields
two sets of time series each with length T = 325, respectively. The
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FIG. 3. Time series of the fully linear (left) and nonlinear (right) systems. The left figure depicts the first T = 30 000 time series steps after the initial transient of the fully
linear system, while the right figure shows the attractor of the fully nonlinear system.

FIG. 4. Log returns of stock indices from six major economies. The illustrated time series are Europe (EU), United States (US), China (CN), Emerging Markets (EE), Japan
(JP), and Pacific excluding Japan (PX). The black dashed vertical line depicts the outbreak of the COVID-19 pandemic in February 2020.
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structural change in the dynamics of the stock indices triggered by
the outbreak of COVID-19 can be observed in Fig. 4.

III. METHODS

In the following, we present the methods used in this work,
which we assign to four different categories: Causality measures,
Fourier transform surrogates, network measures, and the derivation
of governing equations.

A. Causality measures

We select three techniques representing the main categories
currently used in causal inference6—however, it is important to note
that our framework is applicable to any method capable of detecting
nonlinear causality.

1. Granger causality using linear autoregressive model

As one of the first causal inference approaches, Granger causal-
ity (GC) tests whether the prediction error of the next time step of
a time series y can be decreased by including the history of another
time series x—in this case, x is said to Granger cause y.19 Its original
form compares the prediction error of a restricted autoregression
model,

ŷt =
τmax
∑

τ=1

ατ yt−τ + εt, (6)

to its corresponding augmented model,

ŷt =
τmax
∑

τ=1

ατ yt−τ +
τmax
∑

τ=1

βτxt−τ + ηt, (7)

where ατ and βτ are coefficients at lag τ and εt and ηt denote inde-
pendent error terms. While GC is mostly used as a binary statistical
hypothesis test,19 we quantify the strength of the causal coupling
using the following normalization:

ψGC

(

x, y
)

= 1 − min

{

1,

(

RSSaug

RSSrest

)2
}

, (8)

where RSSrest and RSSaug denote the residual sum of squares (RSS)
of the restricted and augmented model, respectively. Hence, when
the regression of the augmented model performs better than the
restricted model (RSSaug < RSSrest), the fraction on the right-hand
side is small—this implies stronger causality.

Since there exists no universal method to determine the optimal
maximum lag τmax, we repeat the procedure for several values of the
maximum lag τmax and average the result. Therefore, we take N = 20
equally distributed values between 1 and the time series length T:
τmax = 1, T/N, 2T/N, . . . , T. As we do not find a significant differ-
ence, we conclude that the average is a good estimator within the
scope of this work.

2. Transfer entropy

Following the proof of equivalence between GC and transfer
entropy (TE) for Gaussian variables,20 the measure introduced by

Schreiber4 has been widely regarded as the information-theoretical
extension of GC. Analogously, TE quantifies the reduction of uncer-
tainty on future values of y by accounting for past values of x given
the history of y. In essence, it is a special case of conditional mutual
information (CMI),

ψTE

(

x, y
)

≡ I
(

y; xt−1: | yt−1:

)

= H
(

y, yt−1:

)

+ H
(

xt−1:, yt−1:

)

− H
(

xt−1:, y, yt−1:

)

− H
(

yt−1:

)

,

where the colon indicates all previous steps of the time series and
where H denotes the (joint) entropy of the time series calculated via

H
(

x, y
)

= −
T

∑

t=1

T
∑

t=1

p
(

xt, yt

)

log p
(

xt, yt

)

. (9)

For better comparability to other inference methods, we propose the
following normalization:

ψTE

(

x, y
)

7→
ψTE

(

x, y
)

√

H
(

y, yt−1:

)

H (x, xt−1:)

. (10)

Our reasoning for this normalization is based on our interpretation
of TE as an asymmetric causal measure, similar to covariance, which
is rescaled to obtain the normalized cross correlation.

We would like to point out that the calculation of empirical
probability densities p and, hence, information-theoretic measures
raise unexpected difficulties exceeding the scope of this work. While
it is common to use histograms with equally distributed bins to esti-
mate densities, Mynter21 showed that this method potentially leads
to biases since the estimation is highly dependent on the partition
details—hence, finding a robust estimator is non-trivial. However,
for the purpose of our research, we find that for time series of length
T a number of

√
T/4 equally distributed bins performs reasonably

well. This was also empirically confirmed by Baur and Räth22 who
used this binning configuration for the construction of generalized
local states in reservoir computing. Furthermore, it is worth men-
tioning that TE might capture false causalities depending on the
dimension of conditioning.23

3. Convergent cross mapping

Another category of causal inference is state-space methods
such as convergent cross-mapping (CCM), which was developed by
Sugihara et al.5 Its underlying idea is based on Takens’ theorem,
which states that the full state-space can be reconstructed from a
single embedded coordinate of the system, also called shadow mani-
fold. Due to transitivity, two coordinates within one system can then
be mapped to each other through neighboring states in their respec-
tive shadow manifolds—this enables a cross prediction. Hence, if x
causes y, the prediction of the future ŷt using the shadow manifold
Mx should be identical to the actual value yt. In the context of CCM,
the prediction is extended from a single value to a series. Therefore,
both time series are divided into training and test sets, where the for-
mer are used to construct the shadow manifolds and the latter serve
as benchmarks to evaluate the prediction performance.
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While CCM is defined as the Pearson correlation ρ between
the prediction ŷ|Mx and the test set of y, we propose another evalu-
ation measure, the correlation distance d =

√
2 (1 − ρ), in order to

rescale the correlation to a positive interval. This entire procedure
is repeated for an increasing training set fraction, which delivers a
series d consisting of D correlation distances. This series should the-
oretically converge to a maximum since the prediction is enhanced
for finer resolutions of the shadow manifolds.

While originally CCM requires visual judgment of the con-
vergence, we introduce an algorithmic approach using overlapping
sliding windows of size d. For each window, we calculate the stan-
dard deviation and set a threshold of 0.1. The convergence is fulfilled
if the standard deviation decreases continuously and falls below the
preset threshold. If d converges, we calculate the mean of its last five
values in order to smooth outliers. In case of non-convergence, we
set the CCM causality to 0,

ψCCM

(

x, y
)

≡
{

1
5

∑5
i=1 dD−5+i if d converges

0 else
∈ [0, 1] . (11)

We would like to point out that there exist reservations toward
CCM regarding some synthetically created systems—however, its
wide range of successful applications is testament to its importance
for causal inference.24 We determined the optimal lag by finding the
first minimum of the lagged mutual information—this yielded a lag
τ = 1. The optimal embedding dimension κ = 3 was found by using
the false-nearest-neighbor algorithm.25

4. Limits of causality measures

We would like to point out that we are aware of the limi-
tations of the causal inference methods presented and of causal
inference in general. However, in this paper, we use them only to
illustrate a framework of how causality can be partitioned into linear
and nonlinear contributions and how, assuming correct measure-
ments, governing equations can be derived. It is beyond the scope
of this paper to analyze whether they measure true causality and
how robust the methods are. For a more detailed discussion of these
points, we refer to their original papers Granger,3 Schreiber,4 and
Sugihara et al.5

With respect to GC, we recognize that its main requirement,
separability of variables, poses problems, especially when applied
to deterministic dynamical systems.19 Therefore, GC only serves as
a verification for our analysis, since it is based on autoregression
and should, therefore, only capture causality arising from linear
properties. We refer to Ref. 3 for more details.

Furthermore, we are aware that TE and CCM work with recon-
structed spaces and that their application to variables within an
attractor has theoretical weaknesses. However, the analysis in this
paper is performed on simulated data and not on a theoretical
basis. We refer the reader to Cummins et al.26 for a detailed dis-
cussion of the effectiveness of state-space reconstruction methods
in determining causality.

Lastly, we would like to note that we are aware that real-
world system can be contaminated by different kinds of noise, which
affects the performance of our methods. However, these issues lie
beyond the scope of this work since they are addressed in the papers

which describe the causality inference methods. Since the methods
work when the causality graphs are correct, their robustness to noise
lies entirely in the robustness of the individual inference models
against noise. We refer to Overbey and Todd27 and Krishna and
Tangirala28 for analyses on TE and CCM, respectively. Empirically,
we find our method to be robust to white noise for Signal-to-Noise
ratios (SNRs) > 50 dB.

B. Fourier transform surrogates

In order to dissect the causality structure of time series systems
into contributions from linear and nonlinear contribution drivers,
we utilize Fourier transform (FT) surrogates. They destroy the non-
linear characteristics of a time series x while keeping the linear ones
unaffected.29

1. Algorithm

First, we perform a Fourier transformation to separate the
linear properties into the amplitudes and the nonlinear ones into
the phases. Through randomizing the phases of its Fourier trans-
formation by adding uniformly distributed numbers φk, solely the
nonlinear features are destroyed. Hence, the back-transformation
only contains the linear properties of the time series,

x̃(k) = F
−1

{

F {x} eiφk
}

. (12)

We increase the robustness of our results by averaging measures that
are calculated on surrogate time series, over multiple realizations of
random phases. Unless otherwise specified, we repeat our measure-
ments for K = 10 realizations. A discussion on surrogate generation
is provided by Räth et al.30

2. Surrogate-based measures

Within the scope of this work we understand a bivariate mea-
sure ψ

(

x, y
)

as a function that maps two time series to a real
number. Hence, we define its corresponding surrogate measure as
the average over K surrogate realizations of both time series,

ψ surro
(

x, y
)

≡ 1

K

K
∑

k=1

ψ

(

x̃(k), ỹ(k)
)

. (13)

As indicated by the superscript k, we add the same random phases
to both time series within one realization. This leaves the phase
differences unaffected, which, for example, preserves the Pearson
correlation.31

Furthermore, we define the cross-measure by only surrogating
the first time series in the argument,

ψ cross
(

x, y
)

≡ 1

K

K
∑

k=1

ψ

(

x̃(k), y
)

, (14)

and analogously define the reverse as the anti-measure,

ψanti
(

x, y
)

≡ 1

K

K
∑

k=1

ψ

(

x, ỹ(k)
)

. (15)
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The intuition behind the cross- and anti-measure is to analyze the
influence of the linear part of x on y under the measure ψ and vice
versa.

3. Nonlinear measures

In the next step, we use these alterations to construct non-
linearity measures extending the idea of nonlinear correlation.8

Therefore, we assume every measure to be composed of a linear part,
represented by the surrogate, and a remaining nonlinear part.

Hence, the most intuitive form is given by the difference,

ψnl ≡ ψ − ψ surro. (16)

As we rule out negative nonlinearities attributing them to spurious
effects, we propose the measure

ψnl ≡ max {0,ψ − ψ surro} . (17)

Further nonlinearity measures can be easily derived by, e.g., normal-
ization or interchanging surro-, cross-, and anti-measures.

C. Evaluation of causality matrices

Given an N-dimensional time series S = {x1, . . . , xN}, we can
hence compute the causality matrix corresponding to an arbitrary

measure ψ
(

x, y
)

,

9 (S) ≡











ψ (x1, x1) . . . ψ (x1, xN)

ψ (x2, x1) . . . ψ (x2, xN)

...
. . .

...
ψ (xN, x1) . . . ψ (xN, xN)











,

which fully describes the explicit links between the individual vari-
ables. In the case of causality measures, they are similar to an
adjacency matrix representing finite graphs—hence, the entries 9i,j

quantify the causal flow from xi to xj.
Especially for high-dimensional systems, it is useful to directly

evaluate the measure of the whole system. Therefore, we develop
intuitive matrix measures, which map a matrix 9 to a real number.
As indicated, a possibility could be to construct a graph from the
measure matrix and to compute its corresponding properties. How-
ever, as causality measures do not necessarily fulfill the conditions
of mathematical distances, we propose the matrix mean

µmean (9) ≡ 1

N2 − N

N
∑

i=1

N
∑

j=1

(

1 − δi,j

)
∣

∣9i,j

∣

∣ , (18)

where we use the Kronecker delta δi,j to dismiss the diagonal entries
of the matrix since ψ (x, x) is equivalent for arbitrary time series x.

Considering our focus on causality measures, causality should
only be present in a system if no impasse exists which breaks the
causal chain. Therefore, we use the geometric mean as it only returns

FIG. 5. Causality box plots of the standard Lorenz (top row) and Halvorsen (bottom row) systems. We compute the mean of the original-, surro, cross-, and anti-matrices
for GC, TE, and CCM, respectively. The sample consists of 50 simulations under the standard configuration. The surrogate-causalities are averaged over K = 10 surrogate
realizations. The Lozenge symbols indicate outliers according to the interquantile range (IQR).32
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a nonzero value if all entries are nonzero,

µgeo (9) ≡





N
∏

i=1

N
∏

j=1

(

1 − δi,j

)
∣

∣9i,j

∣

∣ + δi,j





1
N2−N

. (19)

Note that we include the matrix diagonals for cross- and anti-
measures since their entries offer insights into the linear structure
of the individual time series.

D. Derivation of governing equations

While extracting governing equations from data is key to build
models in diverse fields of science,12 existing methods often require
sophisticated and specifically tailored algorithms. The major diffi-
culty stems from the problem that there is an infinite number of
possible governing equations that represent a finite time series. Even
though the number of possibilities reduces for increasing length, the
individual terms stay unidentifiable.

Hereby, we illustrate a simple rationale to derive equations
directly from the causality matrices inferred from the underlying
time series data. Therefore, we assume that the time series stem from
a deterministic dynamical system, where a finite sample suffices to
identify its underlying causal structure. Hence, by separating lin-
ear and nonlinear causalities, the terms of the governing equations

become separately deducible. Thus, we argue that the causal struc-
ture can be fully described by a linear matrix differential equation
and a nonlinear part,

dx

dt
=

(

dx

dt

)

lin

+
(

dx

dt

)

nl

= 9 linx + 9nl � xn,

where � denotes our rationale for deriving the nonlinear terms and
the superscript n indicates an n-dimensional Cartesian product. For
simplicity, we assume all nonlinearity terms to be of order n = 2.
However, this can be easily extended which is primarily relevant for
high-dimensional systems.

First, we extract the linear terms from the surrogate- and cross-
matrices. While the cross-matrix represents the linear causal flow of
a variable to itself, we can extract the flow of the other variables from
the surrogate-matrix,

9 lin = δi,j9
cross
i,j +

(

1 − δi,j

)

9 surro
i,j . (20)

Since we discard entries smaller than a preset threshold θ = 0.1
attributing them to inaccuracies of the causal inference, the individ-
ual equations are given by

(

dxj

dt

)

lin

=
N

∑

i

2

(

9 lin
i,j − θ

)

xi, (21)

where2 is the Heaviside-function.

FIG. 6. Causality box plots of the fully linear (top row) and nonlinear (bottom row) systems. We compute the mean of the original-, surro, cross-, and anti-matrices for GC, TE,
and CCM, respectively. The sample consists of 50 simulations under the standard configuration. The surrogate-causalities are averaged over K = 10 surrogate realizations.
The Lozenge symbols indicate outliers according to the interquantile range.
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In the next step, we calculate the nonlinear causality-matrix
9nl using the original- and surrogate-matrices. Since it incorpo-
rates inaccuracies stemming from two causal inferences, we raise
the threshold to 2θ . The nonlinear part of the equations can then
be constructed by adhering to two simple rules,

• If in one column xj of 9nl only one entry xi 6= xj exceeds the
threshold, then the nonlinear term entering the equation is

(

dxj

dt

)

nl

= 2

(

9nl
i,j − 2θ

)

x2
i , (22)

since we reason that the entire nonlinear causal flow of the
system must be accumulated in xi.

• If multiple entries {xk, xk+1, . . . , xl} in 9nl exceed the threshold,
then all permutation of pairs enter the equation

(

dxj

dt

)

nl

=
n

∑

i=k

l
∑

j≤i

2

(

9nl
i,j +9nl

j,i − 4θ
)

xixj,

since we argue that the nonlinear causal flow must be split
between all possible pairs.

FIG. 7. TE (top row) and CCM (bottom row) causality of the Lorenz attractor for different degrees of nonlinearity. We compute the causalities for variations of λ1 and
λ2 between 0.01 and 2, respectively. The left grids illustrate the original-causality while the right grid shows the surrogate-causality. All grid entries are averaged over 50
simulations under the standard configuration. The surrogate-causalities are averaged over K = 10 surrogate realizations.
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Then, we merge the linear and nonlinear parts of the derivatives to
construct the full governing equations,

(

dxj

dt

)

=
(

dxj

dt

)

lin

+
(

dxj

dt

)

nl

. (23)

Finally, we assign coefficients to the individual terms and calibrate
them to the data by using the gradient-descent based algorithm
developed by Mariño and Míguez.33

IV. RESULTS

In the following, we present the results of our analysis, which
are divided into four categories: Evaluation of causality matri-
ces, nonlinear strength variation, analysis of causal structures, and
derivation of governing equations.

A. Evaluation of causality matrices

Our analysis of the Lorenz and Halvorsen systems indicates
that the causality is predominantly driven by nonlinear proper-
ties. This is illustrated in Fig. 5, where the box plots show that all
surrogate-based causalities measured by TE and CCM are signifi-
cantly lower than the original causality. This is because the surrogate
time series only exhibit the same linear properties as the original

time series while nonlinear effects are destroyed. We observe that
a significant portion of TE and CCM can be attributed to nonlin-
ear properties. As expected, we confirm that GC is indeed restricted
to measuring linear causality as the original- and surrogate-GC are
both on the same scale. The small deviations stem from the inaccura-
cies of the linear regression required for the calculation of GC. Anal-
ogously to Prichard and Theiler,31 we repeat the calculation where
we use different random phases when calculating the surrogate-GC
between two time series. Since the surrogate-GC almost diminishes,
we conclude that GC—just as Pearson correlation—only depends
on phase differences. Furthermore, our developed anti- and cross-
causalities, which measure the causal flow from the linear properties
of one time series to both the linear and nonlinear properties of
another, vanish for all three inference methods. This further suggests
that the causal flows are mainly dominated by nonlinearity.

To verify that our method only measures linear and nonlinear
causality when the governing equations are fully linear and non-
linear, we performed the analysis for the models given in Eqs. (3)
and (4). Figure 6 highlights the validity of our methods, as the
fully linear model has predominantly linear causality because GC
is significant and the original and surrogate TE and CCM have
similar strengths. For the fully nonlinear model, we observe the
opposite case, where GC is low and the surrogate TE and CCM are
significantly lower than the original TE and CCM.

FIG. 8. Causality decomposition of the standard Lorenz (top row) and Halvorsen (bottom row) systems. For GC, TE, and CCM, we compute the original-, surrogate-, and
nonlinear-causality, respectively. In order to obtain the contribution of each individual causal link to the causality of the whole system, we divide the causality of each link by the
causality of the system. The contributions of the individual causal flows to the causality are mapped by color, while the different inference techniques are indicated by white
stripes. The individual fractions are averaged over 50 simulations under the standard configuration. The surrogate-based causalities are averaged over K = 10 surrogate
realizations.
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B. Nonlinear strength variation

For the Lorenz and Halvorsen attractors, the analysis is
repeated for variations in the degree of nonlinearity. While both sys-
tems diverge for nonlinearity degrees less or equal to 0, the upper
bounds can be chosen arbitrarily as we do not observe significant
changes to the attractor form. We conclude that the level of non-
linearity solely affects the scale of the attractors. Figure 2 illustrates
the attractors for a selection of different parameter configurations.
This behavior directly translates to the causality as indicated for
the Lorenz system in Fig. 7. As expected, we find that the original
causality is significantly larger than the surrogate causality for both
TE and CCM across all degrees of nonlinearity. Furthermore, we
observe that the grids show no visible gradient, which implies that
the causality is independent of the degree of nonlinearity.

C. Analysis of causal structures

On a finer scale, we find that the causal structure of linear
and nonlinear causality differs significantly for the Lorenz system,
as illustrated in Fig. 9. We observe that the x and y pair is mainly
driven by linear properties as it dominates the surrogate-causalities
of GC and CCM—with both directions contributing equal amounts.
In contrast, the surrogate-TE indicates that the direction x to y
dominates the linear causality with a fraction of around 41%. This

result is in line with the governing equations as the equation for x
contains a linear contribution from y, while the equation for y con-
tains a linear and nonlinear contribution from x. The rest of the
system-causalities are more or less split evenly across the remaining
flows.

In comparison, all flows in the Halvorsen attractor contribute
approximately equally to the causality across all causality types and
inference techniques, as depicted in Fig. 8. This causal structure is
expected due to the circulant nature of the governing equations.

D. Derivation of governing equations

In order to verify our rationale, we apply it to the Lorenz and
Halvorsen systems with their corresponding CCM-causal graphs, as
computed from Eqs. (11) and (20), depicted in Fig. 9. The equations
derived for the Lorenz system are

dx

dt
= y − x,

dy

dt
= x − xz − y,

dz

dt
= xy − z,

(24)

FIG. 9. CCM-causality graphs of the standard Lorenz (top row) and Halvorsen (bottom row) systems. The graphs depict the original (left) and the linear (right) CCM causality
between the variables. The dashed lines indicate that the measured causality is not significant (θ < 0.1). Note that the causalities in the loops are determined using the
cross-CCM. The surrogate-based causal links on the right are averaged over K = 10 surrogate realizations.
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TABLE I. Governing equations of the stock indices. This table depicts the derived governing equations for the six economies. The first column shows the time derivative of the

economy while the second and third columns contain the linear and nonlinear terms before the COVID-19 outbreak, respectively. Analogously, the fourth and fifth columns contain

the terms after the COVID-19 outbreak.

Economy Before outbreak linear Before outbreak nonlinear After outbreak linear After outbreak nonlinear

dxeu
dt

xeu + xus + xcn + xee

+ xjp + xpx

xeu xpx xeu + xus + xcn + xee + xpx

xjpxpx + xusxcn + xusxee

+ xusxjp + xcnxee + xcnxjp

+ xeexjp + xeexpx + xeexpx

+ xcnxpx + xusxpx

dxus
dt

xeu + xus + xcn + xee + xjp + xpx xcn xpx xeu + xus + xcn + xjp + xpx xcnxpx + xeexpx + xcnxee

dxcn
dt

xeu + xus + xcn + xee + xjp + xpx xeu xus xcn + xee + xpx

xeuxee + xusxee + xeuxus

+ xeuxpx + xeexpx + xusxpx

dxee
dt

xeu + xus + xcn + xee + xjp + xpx xjp xpx xeu + xus + xcn + xee + xjp + xpx

xeuxcn + xusxcn + xjpxpx

+ xusxjp + xcnxjp + xeuxjp

+ xeuxus + xeuxpx + xcnxpx

+ xusxpx

dxjp

dt
xcn + xjp + xpx + xeuxee

xeuxcn + xusxcn + xusxee

+ xcnxjp + xeuxus + xeuxpx

+ xeexpx + xcnxpx + xusxjp

xus + xcn + xee + xjp + xpx xusxee + xeuxus + xeuxee

dxpx

dt
xeu + xcn + xee + xjp + xpx xus xpx xeu + xcn + xee + xjp + xpx xusxee + xeuxus + xeuxee

while the equations for the Halvorsen system are given by

dx

dt
= x − y − z − y2,

dy

dt
= y − z − x − z2,

dz

dt
= z − x − y − x2.

(25)

By comparing them to Eqs. (1) and (2), we find that our ratio-
nale reproduces the terms of the Lorenz and Halvorsen differential
equations correctly. The calibration of the coefficients using the
algorithm by Mariño and Míguez33 yielded the correct coefficients
σ = 10, ρ = 28, and β = 8/3 for the Lorenz system and a = 1.3 for
the Halvorsen system with errors less than 1e−4, respectively.

These results are stable for thresholds θ < 0.2. In order to
ensure robustness, we repeat the analysis for different initial con-
ditions and find that for a simulation length T ≥ 5000 the causality
inference and, hence, the equation derivation is stable.

In the following, we apply our rationale to a real-world sys-
tem and derive the governing equations from the causal interactions
between stock indices of six major economies: European Union,
United States, China, Emerging Markets, Japan, and Pacific exclud-
ing Japan. The derived equations are shown in Table I, where we find
that all economies except Japan have only one nonlinear term before
the February 2020 COVID-19 pandemic outbreak. In contrast, the
equations for the post-pandemic outbreak phase have at least three
nonlinear terms in all economies, suggesting that nonlinearity has
increased in the financial market. We find this result to be robust to
changes in causal inference technique and thresholds θ < 0.2. Fur-
thermore, we would like to emphasize that we repeated the analysis,

where we remap the rank-ordered time series onto a Gaussian distri-
bution. Since the results remain practically unchanged, we conclude
that our results are mainly driven by dynamic nonlinearities.

This result suggests that the COVID-19 pandemic has led to a
fundamental change in the global financial market, which seems to
make sense in light of the equity rally that was detached from the real
economy.34 Looking forward, as indicated by Haluszczynski et al.,8 a
large amount of nonlinearity in the market can potentially serve as
an early indicator for financial crises.

Note that we do not assign coefficients to the individual terms
of the equations as the calibration method by Mariño and Míguez33

fails due to limited data and high dimensionality. Other equation
derivation algorithms, such as Sparse Identification of Nonlinear
Dynamics (SINDy),12 also face this problem. SINDy is capable of
generating equations with coefficients, but the equations diverge
after a few simulation steps. Developing more sophisticated calibra-
tion methods to solve this problem is part of future research that is
beyond the scope of this paper.

V. DISCUSSION

In this work, we analyzed the linear and nonlinear causal
relations between variables in dynamical systems using different
inference techniques and Fourier transform surrogates, which fil-
ter out the nonlinear properties of time series. We find for Lorenz
and Halvorsen that nonlinearity is a key driver of causality and
that nonlinear causality is independent of the strength of nonlin-
ear terms in the governing equations. Furthermore, we developed
a constructive and fully transparent rationale to derive the correct
governing equations of the Lorenz and Halvorsen attractors directly
from their causal structures—the resulting ease of interpretation is
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the main advantage in comparison to black-box machine learning
approaches. Finally, we applied our methods to stock indices from
different economies and found that the outbreak of the COVID-
19 pandemic triggered a structural change in the global financial
markets.

This work can be extended in several directions. First, the
provided framework can be deployed with further causal infer-
ence techniques and applied to other synthetic systems to confirm
the universality of our results. Furthermore, new methods for cal-
ibrating the equation coefficients can be developed in order to
address the problems of limited data and high dimensionality in
real-world applications—this would enable precise predictions and
the detection of unknown chaos and attractors.
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