Persello, Claudio and Wegner, Jan Dirk and Hänsch, Ronny and Tuia, Devis and Ghamisi, Pedram and Koeva, Mila and Camps-Valls, Gustau (2022) Deep Learning and Earth Observation to Support the Sustainable Development Goals: Current approaches, open challenges, and future opportunities. IEEE Geoscience and Remote Sensing Magazine (GRSM), 10 (2), pp. 172-200. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/MGRS.2021.3136100. ISSN 2168-6831.
![]() |
PDF
- Preprint version (submitted draft)
815kB |
Official URL: https://ieeexplore.ieee.org/abstract/document/9681713
Abstract
The synergistic combination of deep learning (DL) models and Earth observation (EO) promises significant advances to support the Sustainable Development Goals (SDGs). New developments and a plethora of applications are already changing the way humanity will face the challenges of our planet. This article reviews current DL approaches for EO data, along with their applications toward monitoring and achieving the SDGs most impacted by the rapid development of DL in EO. We systematically review case studies to achieve zero hunger, create sustainable cities, deliver tenure security, mitigate and adapt to climate change, and preserve biodiversity. Important societal, economic, and environmental implications are covered. Exciting times are coming when algorithms and Earth data can help in our endeavor to address the climate crisis and support more sustainable development.
Item URL in elib: | https://elib.dlr.de/191309/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||||||
Title: | Deep Learning and Earth Observation to Support the Sustainable Development Goals: Current approaches, open challenges, and future opportunities | ||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||
Date: | June 2022 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | IEEE Geoscience and Remote Sensing Magazine (GRSM) | ||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||||||
Volume: | 10 | ||||||||||||||||||||||||||||||||
DOI: | 10.1109/MGRS.2021.3136100 | ||||||||||||||||||||||||||||||||
Page Range: | pp. 172-200 | ||||||||||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||||||
ISSN: | 2168-6831 | ||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||
Keywords: | Deep Learning, Earth Observation, Sustainable Development Goals | ||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institutes and Institutions: | Microwaves and Radar Institute > SAR Technology | ||||||||||||||||||||||||||||||||
Deposited By: | Hänsch, Ronny | ||||||||||||||||||||||||||||||||
Deposited On: | 01 Dec 2022 13:15 | ||||||||||||||||||||||||||||||||
Last Modified: | 19 Jul 2023 08:53 |
Repository Staff Only: item control page