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The synergistic combination of deep learning models
and Earth observation promises significant advances to
support the sustainable development goals (SDGs). New
developments and a plethora of applications are already
changing the way humanity will face the living planet
challenges. This paper reviews current deep learning
approaches for Earth observation data, along with their
application towards monitoring and achieving the SDGs
most impacted by the rapid development of deep learning
in Earth observation. We systematically review case studies
to 1) achieve zero hunger, 2) sustainable cities, 3) deliver
tenure security, 4) mitigate and adapt to climate change,
and 5) preserve biodiversity. Important societal, economic
and environmental implications are concerned. Exciting
times ahead are coming where algorithms and Earth data
can help in our endeavor to address the climate crisis and
support more sustainable development.

I. INTRODUCTION

Machine learning has played a fundamental role in the
analysis of Earth observation (EO) data for over three decades,
and its importance has been continuously growing. From the
early investigations in artificial neural networks and statistical
techniques [1], [2], the EO community has been striving for
effective algorithms to automate the extraction of information
from various sources of remotely sensed images, in situ data
and models. The developments in sensor technologies and the
increasing availability of voluminous data go hand-in-hand
with the demand for more accurate and scalable information
extraction methods and tools. This demand is spurred by many
geospatial applications and the growing awareness of the ne-
cessity to monitor system Earth for the multiple threats to our
natural environment, climate, and the sustainable development
of human societies.

After a long period when neural networks fell out of
fashion, the deep learning (DL) revolution started about a
decade ago, and brought back the attention to these powerful
learning algorithms [3], [4]. Thanks to the development of
specialized hardware, i.e., graphical processing units (GPUs),
and the availability of large benchmark data sets, DL networks
became more and more popular. They revealed extremely
versatile learning machines able to learn virtually any task
in data and image analysis [5]. Neural networks can be seen

as trainable data-processing graphs, where the input data is
gradually transformed through a sequence of layers that extract
intermediate features and are finally used to predict the target
output. In a supervised setting, the network is trained with a set
of input-output instances, exemplifying the functional relation-
ship between the explanatory covariates and the target variable
to predict. Although simplistic, this view depicts the flexibility
of neural networks for data analysis purposes. A variety of
architectures have been developed so far, the most popular
being multilayer perceptrons (MLPs) [6], convolutional neural
networks (CNNs) [7], recurrent neural networks (RNNs) [8],
autoencoders [9], and generative adversarial networks (GANs)
[10]. Moreover, as the number of consecutive layers increases,
i.e., the network becomes deeper, the algorithm tends to
improve its ability to learn informative features capturing
intricate structures within input variables and their relation
with the target output.

In the context of EO applications, deep networks can
address a large variety of analysis tasks, from image clas-
sification and segmentation to data fusion, change detec-
tion, object detection and delineation. Deep networks can
be designed according to the characteristics of the remotely
sensed data and possibly fuse different sensor data types and
information layers. One of the main advantages of DL is
the ability to learn abstract hierarchical representations of
the data, allowing networks to bring spatial, spectral, and
temporal patterns hidden in the data to the surface. This results
in state-of-the-art performance and enables researchers and
engineers to streamline the information extraction processing
chain, potentially integrating multi-modal data fusion, feature
extraction, and inference tasks into one, holistic, end-to-end
learning framework. The combination of DL with powerful
computing infrastructure and massive EO data sets opens
up tremendous opportunities for geospatial applications. State
of the art DL methods are closing the gap between the
performance of automated workflows and the need for ac-
curate and reliable information imposed by real applications.

“Earth observations can
generate data for mon-
itoring a number of
SDG targets and in-
dicators. Deep Learn-
ing contributes extract-
ing meaningful and con-
sistent information.”

Departing from research lab-
oratories, EO and DL have
nowadays the opportunity to
contribute to some of the
most pressing global soci-
etal challenges, such as those
identified by the 2030 Agenda
for Sustainable Development
[11]. The United Nations
(UN) has defined a set of sev-
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enteen sustainable development goals (SDGs) as a plan of
action to reach peace and prosperity for all people on our
planet by 2030. The goals are related to social, economic, and
environmental challenges and provide a blueprint for shared
action. It is recognised that eradicating poverty in all its
forms and dimensions is the greatest global challenge and an
indispensable requirement for sustainable development. Each
of the seventeen goals has a set of targets and indicators to
measure, monitor, and report the progress of each country.
The global framework established by the UN is designed
around 169 targets and 232 indicators, representing the first
truly data-driven framework in which countries can engage
with evidence-based decision making and policy development
[12]. The 2030 agenda recognizes that if you can’t measure
it, you can’t manage it, thus emphasizing the importance of
objective, accurate and trustworthy information for decision
making. This approach requires using multiple types of data
such as traditional national accounts, household surveys and
routine administrative data, as well as new sources such as EO
data for the extraction of updated geospatial information.

The role of EO in support of the SDGs has been recognized
and facilitated by international organizations such as the group
on Earth observation (GEO), the committee on Earth observa-
tion satellites (CEOS), and the European space agency (ESA)
[12]–[14]. EO can provide continuous temporal information
over the globe, capturing the sustainability of the developments
underpinning the SDG framework. Satellite, airborne, and
unmanned aerial vehicle (UAV) acquisitions provide data at
multiple scales for monitoring the state of natural ecosystems,
natural resources, oceans, coasts, land, built infrastructure and
their change over time. EO data are spatially and temporally
consistent, allowing for effective comparison of the results
among different countries and in different years. EO data
are also complementary with traditional statistical methods,
offering a source of information to cross-check the validity of
in-situ data measurements (such as survey and inventory data)
that are commonly collected by national statistical offices.
Moreover, EO can significantly reduce the cost of monitoring
SDG targets and indicators with respect to traditional data
collection methods. According to the “Compendium of EO
contributions to the SDG targets and indicators” recently
released by ESA [14], 34 SDG indicators can be either
directly (17 indicators) or indirectly (17 indicators) informed
with space-based EO data across 29 targets and 11 goals.
Table I summarizes where EO data can contribute to SDG
targets and indicators, providing examples of EO applications
in support of monitoring the progress and achieving the
goals. The ESA analysis [14] also recognizes the role of
the technical infrastructure for storing and processing big
EO data, and in particular the relevance of cloud computing,
parallel processing systems, and data cubes. However, the
contribution of machine learning and DL towards the SDGs is
not equally emphasized for their ability to extract meaningful
and consistent information from EO data.

This paper aims to analyze the role and opportunities
of DL in EO to support the 2030 agenda for sustainable
development (Fig. 1). Section II provides a review of the recent
developments in DL for EO data analysis, placing them in the

Fig. 1. Framework of the study showing the considered application domains.

context of relevant geospatial applications. Section III gives
an overview of applications where DL methods applied to EO
data contribute towards key SDGs most impacted by the new
technological developments. Section IV reflects on the current
achievements, challenges, and future perspectives. Section V
draws the conclusion.

II. DEEP LEARNING FOR EARTH OBSERVATION DATA

Advancements in DL, often based on computer vision
research, had a large influence in EO image analysis, resulting
in the adoption of DL for a variety of data types and geospatial
applications [15]–[18].

A. Very high resolution images

The analysis of very high resolution (VHR) images has
been the first to benefit from DL. Given the large amount
of spatial information and context contained in VHR images,
the extraction of features has always been an active field of
investigation [19]. With DL, it became possible to learn large
dictionaries of convolutional filters directly from data. The ap-
pearance of publicly available large-scale data sets issued from
competitions enabled the appearance of deep networks specific
for scene classification [20], [21] and semantic segmentation
[22]–[24] of VHR data. The authors in [20] introduced an
explicit metric learning regularization term in the loss function
to learn more discriminative features. A wide number of works
appeared to process these data sets for classifying land cover
at single pixels level: in [25], the authors proposed a hybrid

1Our list differs slightly from those reported in [12]–[14]. We focus here on
target and indicators that can be more directly supported by EO applications
and derived products and is not limited to satellite EO, but also considers
other EO platforms.



IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, VOL. X, NO. X, DECEMBER 2021 3

TABLE I
SDG TARGETS AND INDICATORS THAT CAN BE SUPPORTED BY EO-DERIVED PRODUCTS1 .

SDG Targets Indicators Earth observation application in support of SDG targets and indicators
1.4 1.4.1, 1.4.2 Extraction of visible cadastral boundaries and information in support of fit-for-purpose

land administration systems
1.5 Risk assessment of natural and climate-induced disasters, early warning and post-event

damage assessment

2.3 2.3.1 Spatial distribution of cropland and smallholder farms; estimation of agricultural
productivity

2.4 2.4.1 Assessment of vulnerability to climate change, extreme weather, drought, flooding and
other disasters

3.3 Early warning system for vector-borne disease
3.6 Extraction of road maps and assessment of road conditions (paved/unpaved)
3.9 3.9.1, 3.9.2 Mapping of hazardous chemicals and pollutants in air, water and soil
3.d Geospatial information in support of assessing health risks

5.a 5.a.1 Extraction of visible cadastral boundaries and geospatial information in support of
assessing ownership and secure rights over agricultural land

6.1, 6.3, 6.4 6.3.2 Mapping of water quality and pollutant concentrations
6.5 Geospatial data for runoff modeling; Global rainfall data
6.6 6.6.1 Mapping of water-related ecosystems; Change in the extent of water-related ecosystems

over time

7.1 7.1.1 Mapping human presence and availability of electricity (e.g., using night-time images)
7.2 Geospatial information in support of renewable energies

9.1 9.1.1 Road and transportation network information in rural areas to support assessing
accessibility to all-season roads

11.1, 11.3 11.1.1, 11.3.1 Mapping of slum distributions and extent, housing quality, density and socio-economic
conditions of slum dwellers

11.2 11.2.1 Road network information for assessing the accessibility to public transport
11.4 Geospatial Mapping and monitoring of cultural and natural heritage sites
11.5 Risk assessment and early warning of vulnerable urban areas and disaster-induced

damage assessment
11.6 11.6.2 Air quality maps (PM 2.5 and PM 10 concentration); Mapping waste sites
11.7 11.7.1 Maps of urban green and public open spaces

11.b, 11.c Geospatial information for the development of resilient cities in developing countries
12.2 Maps of natural resources
12.4 Information about waste and pollutant released in air, water and soil

13.1 Risks and damages associated with climate-related hazards and natural disasters
13.2 Environmental variables for climate change models

14.1 14.1.1 Coastal eutrophication and floating plastic debris density
14.2 Maps of marine and coastal ecosystems
14.3 14.3.1 Marine acidity (pH)
14.4 14.4.1 Geochemical (chlorophyll concentration) and geophysical analysis (sea surface temper-

ature and ocean currents) and forecast for global and regional seas
15.1 15.1.1 Forest maps
15.2 15.2.1 Forest inventories, deforestation/afforestation maps, wildfire risk assessment
15.3 15.3.1 Maps of deserts and degraded land, prediction of drought and floods
15.4 15.4.1;15.4.2 Mountain biodiversity maps
15.5 Biodiversity maps
15.7 Wildlife detection to support actions to end poaching and trafficking of protected species

system based on both CNN and traditional descriptor features
and then used them in a random forest. In a subsequent
paper [26], the author trained two CNN models, one for

color and one for height data. In both cases, predictions were
provided at the patch level (i.e., a single label is predicted for
the whole patch), and a conditional random field was used to
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Fig. 2. Architecture of the PAN-MS fusion network (FuseNet) for the pixel-
wise classification of VHR multiresolution images [37], [40].

smooth the results.
After these first efforts, papers started to appear applying

fully convolutional networks (FCNs) [27], providing predic-
tions for each pixel of the patch in one go and greatly reducing
the computational cost at inference time [28]–[32]. Since these
pioneering works, a large number of papers tackling semantic
segmentation have been published in the field and pushed
the boundaries of performance on these data sets. Of notable
interest are papers that tackled issues such as the integration of
prior knowledge [33], edge information [34], invariances [35],
and the explicit inclusion of spatial reasoning [36].

Other works looked at methods to fuse the multiresolu-
tion bands acquired by most VHR satellite sensors, such as
panchromatic (PAN) and multispectral (MS) images [37]–[39].
Bergado et al. [37], introduces a multiresolution FCN, called
FuseNet, to perform an end-to-end image fusion and land-
cover classification (Fig. 2). This architecture, tailored to VHR
satellite data characteristics, resulted in higher performance
than methods based on pansharpening. Contextual label in-
formation is included in ReuseNet [40], a fully-convolutional
recurrent network able to learn the contextual label-to-label
dependencies that are commonly captured by techniques based
on conditional random fields.

Going beyond the human design of CNN architecture,
Wang et al. investigate a neural architecture search (NAS)
approach [41], [42] to automatically design the CNN for the
classification of VHR images [43]. Unlike other NAS methods
based on reinforcement learning or evolutionary algorithms
over a discrete and non-differentiable search space, their
framework uses a gradient-based method to optimize both
architecture and model parameters [44]. A switchable module
allows for addressing both image classification and semantic
segmentation.

Another promising research line investigates the extension
of DL models to the direct prediction of regularized vector
outcomes, i.e., outputs that can be immediately ingested in
geographic information system (GIS) environments [45]–[48]
(Fig. 3). These developments are expected to have many
practical uses for building outline delineation, road network
extraction, and more in general, for urban planning and

a) b)

Fig. 3. a) Instance segmentation algorithm with raster output (Mask R-CNN)
[59]. b) Regularized outline extraction with polygonal output [48].

monitoring applications in the context of SDG 11.

B. Image time series

Recurrent Neural Networks (RNN) are a powerful method
for modeling sequential data leading to much progress espe-
cially in language processing [49]–[51]. Their capability of
learning long-range patterns over time make RNNs promising
tools for a variety of tasks in remote sensing, too. One
important example in the context of SDGs is food security
and assessment of famine risk (SDG 2), which calls for large-
scale mapping of agricultural activities. RNNs allow learning
temporal patterns specific to different kinds of agricultural
land use like demonstrated in [52]–[55] (see more details in
Section III-A1). A cell is the basic building block of an RNN.
It combines the data of the current time step in the sequence
and the unit’s output from the previous time step as two inputs.
While RNNs can, in principle, handle sequences of arbitrary
and varying length, they are (in their basic form) challenged
by long-term dependencies since learning those would require
the propagation of gradients over many time steps. Gated
architectures like Long Short-Term Memory (LSTM) cells [56]
and Gated Recurrent Units (GRU) [57] aim at mitigating this
problem. They use gating mechanisms to store and propagate
information over longer time intervals to reduce the vanishing
gradient problem. In general, abstract features are often rep-
resented better by deeper architectures [58]. In the same way
that multiple hidden layers can be stacked in traditional feed-
forward networks, multiple recurrent cells can also be stacked
on top of each other, i.e., the output (or the hidden state) of
the lower cell is connected to the input of the next-higher cell,
allowing for different dynamics.

C. Hyperspectral images

Hyperspectral images (HSIs) have intensively contributed to
SDGs, in particular, SDG 2 [60], SDG 6 [61], SDG 14 [62],
and SDG 15 [63]. CNNs might be the most widely used deep
architecture for feature extraction and classification due to
the utilization of shared weights and local connections, which
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substantially decrease the number of trainable parameters in
such networks compared to its fully connected alternatives.
In the literature, 1D- [64], 2D- [65], and 3D-CNNs [66]
have been employed to extract spectral, spatial, and spectral-
spatial information, respectively, from HSI images. The high
dimensionality of HSIs, which leads to a higher number of
trainable parameters compared to gray scale or multispectral
images, along with the availability of only a limited number
of training samples, make the training stage of such data
extremely challenging. To address these issues, some basic
strategies such as dropout and weight decay can be used.
In addition, four sets of strategies have been investigated
to properly train such high-dimensional data with only a
limited number of training samples such as dimensionality
reduction [67], data augmentation [68], transfer learning [69],
and semisupervised or even unsupervised learning [70].

RNNs have also been applied to HSI image analysis. By
considering the spectral signature of each pixel vector as
sequential data, RNN can be applied to a single hyperspectral
image for classification [71]. In this context, for each pixel
vector, the spectral values are usually fed into RNN from
the first band to the last one (this can also be done in a
bidirectional way [72]), and the output of the hidden layer
at the last band is the extracted spectral feature. In real
applications, the sequences’ length can be very long (equal
to the number of bands), which leads to training difficulties
such as gradient vanishing or explosion. To address this issue,
a possible solution is to group the spectral bands into shorter
sequences [73] or use LSTM [74] and GRU [75].

D. Synthetic aperture radar

Synthetic Aperture Radar (SAR) emits coherent microwave
pulses and records the amplitude and phase of their backscat-
tered echo. As an active sensor, it is independent of daylight,
and due to the used frequencies, it can penetrate clouds,
dust, and to some degree vegetation, soil, ice, and other
materials. Applications range from estimating surface charac-
teristics such as roughness and moisture and using polarimetric
SAR for land cover/use classification, interferometric SAR for
the generation of digital elevation models, and tomographic
SAR to estimate height profiles over forests or urban areas.
However, SAR has not yet seen the same attention of DL as
optical sensors (for a detailed review of DL in SAR we refer
the reader to [76]). The reasons for this are manifold. First,
the imaging geometry differs greatly from optical cameras
causing effects unknown in optical imagery such as layover
or displacement of moving objects. Furthermore, objects’
appearance is strongly view dependent (e.g., certain types of
backscatter happen only for certain geometric arrangements
between sensor and object). Second, SAR records the ampli-
tude and phase of the received backscatter of a coherent pulse
and is therefore complex-valued. While the absolute phase
of a single-channel SAR image has no direct meaning, the
relative phase between two polarimetric channels or two SAR
acquisitions is highly important. Since most machine learning
methods and frameworks are designed for real-valued data,
early approaches to apply DL to SAR data relied on the

extraction of real-valued (and mostly hand-crafted) features
used as input for the network (e.g. [77]). To address this issue,
complex-valued CNNs and FCNs that directly work on the
complex-valued data by using complex-valued convolutions,
activation functions, as well as loss functions have been
introduced in [78] and [79], respectively. A NAS approach
is proposed in [80] to automate CNN architecture design for
SAR data and applied to LC/LU classification. CNNs for scene
classification are studied in [81], and RNN architectures for
object detection are investigated in [82].

The phase of multiple SAR images plays a particular role
in interferometric SAR (InSAR) as it relates to changes
in height. It is used to generate digital elevation models,
monitor earthquakes and volcanoes or general land subsidence.
Corresponding networks need to be invariant to constant phase
offsets as well as take the cyclic nature of the phase angle
into account. CNNs have been used to enhance the quality of
measured interferograms [83], to directly estimate the inter-
ferometric phase and coherence [84], as well as performing
phase unwrapping [85], i.e. the conversion of the cyclic phase
into an absolute phase field to estimate topographic heights
or deformations. One particular problem in InSAR processing
is decorrelation of the two SAR measurements which can be
due to several causes including temporal changes as well as
volumetric scattering. The latter often indicates vegetation and
is used in [86] as input to a U-Net [87] to derive forests maps.

Another effect that has hindered the direct application of
methods designed for optical images to SAR data is speckle:
a chaotic fluctuation inherent to all measurements based
on coherent waves caused by the interference of multiple
backscattering in one resolution cell. Speckle reduction has
greatly benefited from DL, by using supervised CNN-based
denoising [88], [89], a multistream complex-valued FCN [90]
or by exploiting approaches such as noise2noise (e.g., in [91],
[92]) that do not require clean data.

E. Big Geodata fusion

A sharp increase in the amount of data captured by sensing
devices has lead to the big data deluge, the creation of
the new field of data science and the popularization of DL
algorithms to deal with such data [93]. In a similar manner,
the field of remote sensing (RS) has been influenced by an
ever-growing number of spaceborne, airborne, and proximate
sensing devices such as UAVs to acquire multiscale data from
a particular scene. The increase in the number, quality and
volume of passive sensing devices has been coupled with the
growth in the number of alternative modes of measurement
such as airborne light detection and ranging (LiDAR), which
generates point clouds representing elevation [94], and SAR
sensors [95]. Furthermore, the new sources of ancillary data
(e.g., data from crowd-sourcing and social media [96]) have
been used along with RS devices for a variety of applications
in the context of smart cities and smart environment, hazards
and disaster identification, or tracking.

Multi-source data fusion aims to integrate the data of
different types, distributions, and sources (can be from a single
sensor or from different sensors) by leveraging modality-
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specific information to improve the performance of the pro-
cessing approaches compared to a single modality. CNN and
its variants have significantly contributed to a wide range of
multisource data fusion scenarios such as 1) spatio-spectral
fusion to produce a fine-spectral fine-spatial resolution image
[97], [98]; 2) spatio-temporal fusion to create a fine-spatio-
temporal resolution image [99], [100]; 3) active (e.g., SAR
and LiDAR) and passive (e.g., multispectral and hyperspectral)
data fusion mainly to improve classification performance or
data matching [101], [102]; 4) RS and social media fusion
[93], [103].

III. DL APPLICATIONS CONTRIBUTING TO THE SDGS

This section provides an overview of DL and EO appli-
cations contributing to the monitoring and achievement of
selected SDGs. We focus on applications in the context of 1)
zero hunger (SDG 2), 2) sustainable cities and communities
(SDG 11), 3) tenure security (multiple SDGs), 4) climate
actions (SDG 13), and 5) life on land (SDG 15).

A. Zero Hunger

Monitoring agricultural land use and production is essential
to achieve zero hunger (SDG 2). It is of high importance for
food production, biodiversity, and forestry [104]. An increas-
ing world population, climate change, and changes in food
consumption habits put yet uncultivated areas under pressure,
while leading to intensification in existing agricultural areas
[105]. Cropland expansion and intensive use of agricultural
areas are often connected with negative ecological impacts
like deforestation and biodiversity loss, but also degradation
of ecosystem services like ground and surface water quality
[106], [107]. Therefore, dense, accurate monitoring of agri-
cultural lands plays an essential role for their optimal and
sustainable management.

Some of the communities most vulnerable to hunger are
smallholder farmers, who dominate agriculture in sub-Saharan
Africa with an estimated 51 million farms predominantly
characterized by rain-fed production for household consump-
tion [108]. African smallholder farmers often live in poverty
in areas prone to natural hazards, where climate change is
exacerbating risks of hunger and breakdown of food sys-
tems. The large population growth in these areas urgently
requires increased production, resilience to natural disasters,
improvements in financial services and the governance of food
production systems. These improvements are fundamental for
defeating hunger and malnutrition, realizing the SDG 2, and
in particular target 2.3, which aims to double the agricultural
productivity and the incomes of small-scale food producers
by 2030. Sustainably increasing the productivity of these
agricultural systems and thus improving food security and the
livelihoods of smallholder families is a challenge, partly due
to a lack of information about these systems.

Knowledge of crop areas and certain land uses is of im-
portance for many political programs that aim to reduce and
alleviate the environmental impacts of intensive agriculture too
[104]. Policy-driven incentives, for instance, foster a particular
share of a farm’s area to remain extensively used grassland to

promote biodiversity, or give subsidies to promote a certain
crop mix in the rotation [109]. Collecting information is
traditionally based on farmer self-reporting and spot checking
by the authorities in the field, which is laborious, costly,
and prone to errors. Modern machine learning methods in
combination with publicly available satellite imagery provides
new possibilities for more accurate spatially dense monitoring
of agricultural sites at high temporal resolution and low cost.
One particularly promising recent sensor is Sentinel-2, due to
its low ground sampling distance (10 m) at a revisit rate of
3-5 days. In general, the spectral signal of the vegetation as
captured by the satellite has specific characteristics as a func-
tion of (i) soil structure and composition (e.g., soil brightness,
soil water content, soil type, etc.), (ii) vegetation structure
(e.g., canopy cover, Leaf Area Index (LAI), plant height,
leaf angle, etc.) and (iii) leaf biochemistry (e.g., chlorophyll,
water content, nitrogen content, etc.) [110]. Not only does
each plant species have its own spectral signature, but spectral
characteristics are also highly dependent on the phenological
stage of the plant [111], [112]. Instead of merely analysing
images at a single point in time, time-series (sequences) of
satellite images thus provide significant additional evidence
about crop species, and time-series analysis is a standard
practice in agricultural RS.

1) Crop type mapping: Crop classification from satel-
lite data has been widely studied in RS. Traditional ma-
chine learning approaches with handcrafted features [113],
[114] predominantly rely on vegetation indices like the Nor-
malized Difference Vegetation Index (NDVI) [115], [116].
Different strategies have been explored to include the
temporal evolution as further evidence for classification,
such as temporal windows [117], hidden Markov models
and dynamic time warping [118], [119], and conditional
random fields [120]. These traditional machine learning
models have in common that they struggle to represent
the complex spatio-temporal dynamics of spectral features.

“Machine learning in
combination with open
EO data provides new
possibilities for monitor-
ing agricultural sites at
low cost”

Recent DL models no longer
rely on hand-engineered fea-
tures to encode spectral, spa-
tial, and temporal patterns.
They can learn very com-
plex, highly non-linear rela-
tionships if given sufficient
labeled training data and computational resources. The au-
thors in [122] propose to use a CNN that combines cross-
entropy and regression losses for simultaneously mapping
and counting oil palm, coconut palm, and olive trees at a
country-scale. In [52], the authors use an RNN with LSTM to
encode temporal dependencies in the data, while in [123] the
results on the same data set are improved by encoding both
temporal and spatial dependencies via convolutional LSTM. In
[124], satellite images are first processed individually with a
CNN to obtain per-image features; then temporal dependencies
between these features are modeled with a separate RNN.
Further options are temporal CNNs that combine features
also across time with convolutions [125], or models that
use the attention principle [126] to aggregate information
across time [53]. The work in [54] combines pixel-set encoder
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Fig. 4. Example of spatio-temporal deep learning for crop monitoring from high resolution images. A bi-LSTM deep network model was used to exploit the
spatial regularities and the temporal dimension of a sequence of Sentinel-2 time series to predict the land use over a number of classes of interest (left) and
the pixel probability map (right). Figure adapted from [121].

and transformer [126] and shows improved performance over
RNN-based approaches. The authors in [55] build a deep
RNN with a new cell structure termed STAR that trains better
than LSTM- and GRU-type models and is more parameter-
efficient. This makes it possible to train deeper models, which
translates to improved performance across a range of sequence
modeling tasks. A recent alternative to RNN approaches
for crop mapping are neural ordinary differential equations
(NODE) that can interpolate in case of missing data [127]
due cloud coverage, for example. Finally, recent approaches
have considered spatio-temporal bi-LSTM architectures to
fully exploit information of long time series of high-resolution
Sentinel-2 data to classify different crop types (rice, fallow,
barley, oat, wheat, sunflower, and triticale) [121], see Fig. 4.

2) Delineation of field boundaries: Field boundaries are
essential for digital agricultural services enabling the esti-
mation of cropland areas, to aggregate and record specific
information in a spatial database such as crop grown, soil
type, yield, application of pesticide and fertilizer. Moreover,
they facilitate the extraction of land tenure boundaries for
recording land rights in cadastral systems (see Section III-C).
Early research on field boundary delineation from EO data has
focused on unsupervised techniques based on edge detection or
segmentation [128]–[130]. These approaches are typically ap-
plied to areas characterized by intensive agriculture with large
plots using medium resolution images. However, small area
fields (<2 hectare) represent 40% of the fields worldwide and
make up 70% of the cropland in Asia and Africa [131]. The
delineation of such fields is extremely challenging since plots
are small, irregularly shaped often with indistinct boundaries.
In these circumstances, standard techniques fail in achieving
the required accuracy. To this end, DL-based strategies have
resulted in significantly higher performance [132], [133]. An
approach based on SegNet [134] and combinatorial grouping
was proposed in [132] (Fig. 5). The FCN is trained to
detect field contours discarding irrelevant edges. The detected
sparse edges are then used as input to the oriented watershed
transform algorithm to extract a hierarchy of closed segments
and iteratively merging adjacent regions based on the strength

of their common boundary [135]. The final segmentation is
obtained by applying the single-scale combinatorial grouping
algorithm that explores the segmentation hierarchy to generate
accurate field segments [136]. Promising results are obtained
in two study areas in Nigeria and Mali. Marvaniya et al.
present a multi-stage approach that uses a combination of DL
for edge detection and a sequence of post-processing steps for
improving the results [133].

Other recent DL-based solutions include [137]–[140]. A
method based on U-Net and open data from the land parcel
identification system of Spain was investigated in [137]. Wald-
ner and Diakogiannis adopted a multitask approach to tackle
the problem. They used a ResUNet-a FCN to identify: 1) the
extent of fields; 2) the field boundaries; and 3) the distance to
the closest boundary [138]. Using a single monthly composite
image from Sentinel-2 as input, their model could accurately
map field extent and boundaries. Other notable works have
investigated a super-resolution mapping approach [139] and
the combination of neural networks with graph-based growing
contours method to extract agricultural field polygons [140].

B. Sustainable cities and communities

Cities are the economic hubs of modern nations and home
of an estimated 55.3% of the world’s population. By 2030,
urban areas are projected to house 60% of the people glob-
ally, reaching 68% by 2050 [141]. While urbanization cre-
ates opportunities for economic developments, it also creates
enormous social and environmental challenges. Some of the
most pressing issues are the management of natural haz-
ards, pollution, and the surge of socioeconomic inequalities
resulting from excluding the poor from the social fabric.

“Approximately 1 billion
people worldwide reside
in informal settlements,
living in deprived condi-
tions lacking access to es-
sential services”

According to UN-Habitat,
approximately 1 billion
people worldwide reside
in informal settlements,
commonly called slums,
living in deprived
conditions lacking access
to essential services such
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Fig. 5. DL workflow for field boundary delineation in smallholder farms from VHR imagery [132]. SegNet is first applied to extract (fragmented) contours of
the agricultural fields. The oriented watershed transform (OWT) is then utilized to extract a hierachical segmentation. Finally, the single-scale combinatorial
grouping (SCG) algorithm globalises local cues using an efficient implementation of normalized cuts and explores the combinatorial space of the segmentation
hierarchy to generate regions that are likely to represent complete fields.

as safe water, acceptable
sanitation, and durable housing [142].

The rapid urbanization processes in low and middle-income
countries contribute to the proliferation of deprived neigh-
borhoods where dwellers live in crowded areas in unhealthy
conditions and often without tenure security. In addition to
that, these communities are also among the most vulnerable
to the effects of climate change and the increasing frequency
and intensity of natural disasters such as floods, heatwaves,
droughts, landslides, storms, wildfires, and cyclones [143].

1) Mapping slums and urban poverty: The 2030 agenda
pays particular attention to these global challenges with SDG
11, which aims at inclusive, safe, resilient, and sustainable
cities and human settlements. The key indicator 11.1.1 requires
monitoring “the proportion of urban population living in
slums, informal settlements or inadequate housing.” Current
global statistics show a decline in the percentage of urban
population living in slums, but an absolute increase of inhabi-
tants living in such areas [144]. Nevertheless, official national
statistics are often outdated, inconsistent, or simply inaccurate.
Small slum pockets are generally neglected, and population
counts based on census data subject to large uncertainties,
especially in large metropolitan areas [145]. More accurate
and globally consistent methods to gather data on the slum
population and their socioeconomic conditions are therefore
needed.

Several studies show the ability of remote-sensing tech-
niques to identify informal settlements, providing a relatively
consistent mapping approach applicable over large areas and
repeatable in time [146]. Maps derived from VHR satel-
lite data can support SDG 11 and the monitoring indicator
11.1.1 in particular. Detailed 2D and 3D geospatial infor-
mation extracted from UAV data can support the planning
and monitoring of urban upgrading projects, thus contribut-
ing to targets 11.b and 11.c [147], [148] (Fig. 6). Map-
ping informal settlements can be performed on the basis
of physical and morphological characteristics captured by
VHR satellite images. Slums are commonly densely built-up
areas characterized by small buildings arranged according to
irregular layout patterns and lack of green spaces. Extracting
these characteristics automatically from images is, however,

a difficult task. The spectral information alone is insufficient
to discriminate between different urban typologies (formal vs.
informal). It is necessary to extract contextual features capable
of capturing long-range pixel dependency for distinguishing
the different spatial patterns. Conventional machine learning
approaches resort to the extraction of texture statistics, local
binary patterns, oriented gradients, and segment-based features
[149], [150]. However, these methods depend on several free
parameters, which are difficult to optimize and usually set
according to user experience.

The ability of CNNs to automatically learn high-level spatial
features results in a streamlined workflow for slum mapping
and higher classification accuracy. Mboga et al. apply CNN to
detect informal settlements in Dar es Salaam, Tanzania, report-
ing an accuracy improvement over a support vector machine
classifier trained with texture features and local binary patterns
[151]. The authors in [32] introduce FCNs for mapping
informal settlements from VHR images. To this end, they
adopt an FCN architecture with dilated convolutions (named
FCN-DK), therefore capturing long-range pixel dependencies
while keeping a limited number of network parameters. The
best results are obtained by a network with six convolutional
layers using increasing dilation factors. Moreover, they report
a significant advantage in terms of computational cost at
testing time with respect to patch-based CNN. Wurm et al.
investigate the transferability of an FCN model pre-trained on
VHR images to map slums in coarser resolution Sentinel-2
images and SAR data acquired by TerraSAR-X [152]. They
use an FCN-VGG19 architecture adapted from [27]. Their
results show that transfer learning can significantly improve
the results on Sentinel-2 while not on TerraSAR-X data.
Wang et al. investigate a U-Net compound model, including
dilated convolution operations, to map deprivation pockets in
Bangalore, India [153]. The authors in [154] use an FCN-
based approach to study the temporal dynamics of slums,
looking in particular at the temporary slum pockets. The study
investigates two change detection approaches based on FCN
with dilated convolutions. The first approach uses a post-
classification change detection, and the second trains FCNs
to directly classify the transition in the land cover classes.
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a) 2D Orthomosaic

b) 3D photogrammetric point cloud

Fig. 6. UAV image acquired over an informal settlement in Kigali, Rwanda.
a) 2D Orthomosaic. b) 3D photogrammetric point cloud [147].

2) Revealing socioeconomic inequalities: The papers men-
tioned above cast the slum mapping problem as a crisp
classification, assuming that a boundary can be drawn to
separate formal and deprived settlements. Departing from this
dichotomy, Ajami et al. adopt a framework conceptualizing the
multi-dimensional nature of deprivation including not only the
physical (e.g., poor house material) and financial level (e.g.,
low-income residents), but also human, social, and contextual
variables such as accessibility to healthcare, education, and
other services or social exclusion factors [155]. The study in-
troduces a data-driven approach to summarize multiple depri-
vation variables (both categorical and real-valued) into a single
real-valued socioeconomic index, named data-driven index of
multiple deprivations. A CNN-based transfer-learning method
predicts the socioeconomic index values based on VHR images
and geographic information system (GIS) features. The results
show that an ensemble non-linear regression model, combining
the results of the CNN and models based on hand-crafted and
GIS features, can explain 75% of the variation in the poverty
index obtained from household data.

Other works have applied DL models to nighttime satellite
images, street-view, and aerial imagery to infer socioeconomic

conditions. Jean et al. use a CNN-based model to predict
economic well-being across five African countries [156]. The
CNN model, pre-trained on ImageNet, is fine-tuned to predict
nighttime light intensities (used as a proxy for economic
activities) corresponding to input daytime satellite imagery.
Finally, the CNN-extracted features, along with survey data,
are used as input to a ridge regression algorithm to infer
the economic well-being. Social, environmental, and health
conditions are extracted in [157] by a DL method applied
to street-view images for major cities in the UK. Abitbol
et al. use a modified EfficientNetB0 CNN architecture [158]
to predicting socioeconomic status across France from aerial
images and use activation maps to interpret the urban topology
[159].

C. Deliver tenure security for all

Secure property rights and efficient registration systems are
essential for the modern economy. They give guaranty to indi-
viduals and businesses to invest in land, creating the conditions
for improving the livelihoods and sustainable management
of natural resources, and enabling governments to collect
property taxes, which are necessary to finance infrastructure
and services to citizens. Unfortunately, a mere 30% of the
global population has legally registered rights to their land
and homes [160], [161], which means that more than 5 billion
of the world’s 7.8 billion people do not have documented
land rights. Moreover, this percentage drops down to 10%
in African countries [162]. The insecurity of land tenure and
property rights is often at the root of poverty and inequality
[163], [164], leading to legal conflicts, unequal economic
systems, locks of assets, challenging effective and democratic
governance principles.

“The insecurity of land
tenure and property
rights is often at the
root of poverty and in-
equality”

The 2030 agenda recognizes
the fundamental role of land
rights security in several targets
and indicators under SDG 1,
2, 5, 11, 15, and 16. The cor-
rect registration of land tenure
rights directly impacts food se-
curity, environmental sustainability, and advancing women’s
empowerment worldwide. In many countries, the land is
communally owned, but tenure insecurity is often the product
of the government’s inability to respond to the technical
regularization needs [165]. Therefore, significant efforts are
needed to formalize land ownership of the poor and vulnerable
(target 1.4, indicator 1.4.2). Secure access to land is essential
for small-scale agricultural producers to invest in their land
and contribute to the market (targets 2.3 and 2.4). It is also
fundamental for gender equality, ensuring women’s rights to
land tenure (SDG 5). The authors in [166] show that secure
land tenure for women improves investments in agricultural
developments and enhances the chance of women involvement
in family food and agricultural productivity. Lack of tenure
security also impacts the development of sustainable cities
(SDG 11), the management of natural resources (SDG 15),
and the synergy between land administration agencies, courts,
and legal support services (SDG 16).
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VHR image Reference map Patch-Based CNN FCN-DK6

Fig. 7. Informal settlement mapping over two test areas in Dar es Salaam, Tanzania, using patch-based CNN and FCN-DK6 [32]. “informal settlements” in
yellow and “rest” in blue.

Strategies to support these goals rely partly on the devel-
opment of land administration systems (LAS) to formalize
land rights and implement land-related policies [167]. There
is a clear need for innovation for fast, accurate, and cost-
effective cadastral mapping needed for LASs [168]. The
traditional surveying methods prove to be quite costly, slow,
and labor-intensive. In response, fit-for-purpose (FFP) land
administration [169] advises and supports the development
of new technologies using remotely sensed data and taking
the country context into account. The FFP concept is also
included in the recently developed framework for effective land
administration (FELA) developed by the UN expert group
on land administration and management, which is acting as
a standard at international level [170]. Spatial land rights
recording, i.e., cadastral mapping, is the most expensive part
of a land administration system [171]. Automation or semi-
automation of cadastral boundary delineation based on satellite
or UAV images has been investigated since physical objects
often coincide with visible cadastral boundaries and can be
detected through image analysis [172]–[176]. The extracted
boundaries should be combined with legal information, a
procedure known as adjudication, and should incorporate local
knowledge from human operators.

Initially explored methods for the automated extraction
of cadastral boundaries from EO images are based on im-
age segmentation and edge detection [173]. However, the
main disadvantages of these methods are sensitivity to intra-
parcel variability and dependence of the selected parameters
[177], [178]. Better results have been achieved using learning-
based contour detectors such as the globalized probability
of boundary (gPb) [135], which combines brightness, color,
and texture cues into a globalization framework using spectral
clustering. Recent studies explored DL methods [179], [180].

The consortium of its4land 2 project developed a suite of open-
source solutions for land tenure recording using EO data [168],
[181]–[183]. They developed methods based on gPb, SLIC
superpixels, and CNN to extract cadastral boundaries and a
strategy to assign costs to each line incorporating local user
knowledge. This work resulted in an open-source plugin for
QGIS providing user-guided delineation functions calculating
least-cost paths along the extracted and weighted boundaries.
Experiments were conducted using aerial images acquired in
Ethiopia and UAV images from Rwanda and Kenya (Fig. 8).
Overall, the obtained results based on CNN-derived boundaries
achieved a precision of 76%. The use of this semi-automated
interactive method leads users to spend 38% less time and
80% fewer clicks compared to manual delineation [179], [184].
Following this research line, Xue et al. [180] explored the
potential of FCNs to extract cadastral boundaries in urban and
semi-urban areas in Rwanda using UAV data. The authors
adopted the FCN-DK architecture, which compared to gPb
and multiresolution segmentation, resulted in overall better
performance. Nevertheless, the performance of any automated
method depends on the presence of visible objects delimiting
the boundary of the property (e.g., fences, pathways, walls,
roads, land cover transitions). In support of the full land
recording process, Chipofya et al. developed an approach
incorporating hand-drawn sketch maps with remotely sensed
data [185]. The approach converts the raster sketch map into
vector automatically, and the hand-drawn symbols are detected
and recognized using a CNN. The system performs a stroke-
based image segmentation wherein boundaries of sketched
objects are drawn and delineated. Finally, the concepts cor-
responding to the detected symbols are applied to the image
segments based on distance and a fixed set of rules specifying

2https://its4land.com/
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Fig. 8. Cadastral mapping tool (its4land) applied to a rural areas in Ethiopia

spatial constraints on configurations of different types of
features.

D. Climate Action

The current scenario of climate change and the projections
from climate models call for a definite and urgent action as
requested by SDG 13 [186], [187]. Extreme events are more
severe, more frequent, and more unexpected in space and
time [188]. The Earth system is actually changing globally
but also at local and regional scales, with huge implications
in ecosystems, biodiversity and agriculture just to name a
few. In this scenario, humanity faces the challenge of both
mitigation and adaptation to climate change, that is; try to
reduce emissions as much as possible while preparing for
unavoidable consequences that are no longer a future, but a
reality [189]. Machine learning and DL, in particular, can help
in the myriad of aspects concerned in both issues. The 2030
agenda focuses mainly on adaptation aspects with target 13.1
demanding to strengthen resilience and adaptive capacity to
climate-related hazards and natural disasters in all countries.

Mitigation of greenhouse gas (GHG) emissions requires
important changes to electricity systems, transportation, build-
ings, industry, and land use. Adaptation requires planning for
resilience and disaster management, given an understanding
of climate and extreme events, see [189] for a organized
collective effort to synthesize both the methods and challenges.

1) DL for climate change mitigation: Reducing emissions
can be achieved with machine learning and DL models. For
instance, several DL models have been used to forecast elec-
tricity supply and demand, e.g., create short and medium-term
forecasts of solar power [190] and wind power [191], [192] or
even to use deep networks to produce demand forecasts that
optimize for electricity scheduling costs rather than forecast
accuracy [193]. DL in combination with RS satellite imagery
has been also used to generate size and location data for
rooftop solar panels [194], [195], and there are some deep
networks that estimate the state of the system [196], [197].
As electricity gets transported from generators to consumers,

some of it gets lost as resistive heat on electricity lines. Prior
work has performed predictive maintenance using LSTMs
[198] and neural network-plus-clustering techniques [199] on
electric grid data. Another important field of action is that of
transportation. Decarbonizing transport is essential to a low-
carbon society, and there are numerous applications where
machine learning can make an impact. For instance, vehicles
can be detected in VHR images accurately [200]–[202] and
image counts can serve to estimate average vehicle traffic
[203]. Neural networks have also been used for analyzing
preferences of customers traveling by high-speed trains. Many
critical systems inside buildings can be made radically more
efficient. Deep autoencoders can be used to simplify infor-
mation about machine operation so that deep neural networks
can then more easily predict multiple kinds of faults [204].
Occupancy detection in buildings can help identify energy
demands, a problem where deep neural networks have been
also applied [205]. DL can also help to monitor and optimize
the operations in smart buildings [206]. Machine learning may
be able to help with many aspects of CO2 sequestration. While
still in its infancy, we have seen recent approaches on the
use of convolutional image-to-image regression techniques for
uncertainty quantification in a global carbon storage simulation
study [207]. Such models can help in the development of
novel strategies to monitor and develop underground carbon
sequestration techniques.

2) DL for climate change adaptation: We use general
circulation and Earth system models to anticipate climate
scenarios on our planet, and to inform local and national
governments for decision making. Models have become very
precise in projecting scenarios, but still they disagree in some
particular cases and are very computationally expensive to run.
Machine learning in general and DL in particular can help
to mitigate both aspects. The largest part of the uncertainty
comes from the parameterization of clouds and aerosols in
the models, which have clear implications as bright clouds
block sunlight and cool the Earth. Deep neural networks
have been used to emulate the behavior of high-resolution
cloud resolving simulations at a fraction of the computational
cost [208]. Improvements are expected by the combination
of DL and process understanding in a new form of hybrid
modeling approaches that are data-driven while respecting the
fundamental laws of physics [4], [209]. Future improvements
in climate modelling will necessarily have to account for the
proper characterization and modeling of ice sheet dynamics
and sea level rise, yet machine learning has not approached
such problems yet systematically [209]–[211].

Weather models are optimized to track the rapid, chaotic
changes of the atmosphere, and DL has recently impacted
the associated problems. For instance, deep networks are now
heavily used to make local forecasts from coarse 10–100
km climate or weather model predictions [212], while other
researchers try to translate high-resolution climate forecasts
into risk scenarios, e.g. of localized flooding patterns from
past data [213], which has clear impacts on individuals. Accu-
rately forecasting hazards and their impacts has societal, eco-
nomical, and environmental implications. DL is now present
in initiatives involving preserving ecosystems at risk [214],
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monitoring the risk of food insecurity [215] and deployment
of a swift, effective disaster response [216]. Yet, humans
can also intervene in the system directly. This is the field
of geoengineering. For example, neural networks approaches
could facilitate the fast release of aerosols in both space and
time [217]. Modeling impacts is also of high relevance; the
authors in [218] use deep neural networks to estimate the
effects of aerosols on human health, while Crane-Droesch et
al. use them to estimate the effects of solar geoengineering on
agriculture [219]. Finally, we should note that geoengineering
raises many ethical questions, where explainable, accountable
AI and fair learning should be part of the discussion.

E. Life on Land

SDG 15 aims to protect, restore and promote sustainable use
of terrestrial ecosystems, sustainably manage forests, combat
desertification, halt and reverse land degradation, and stop
the loss of biodiversity. Achieving this goal has far reaching
consequences that are closely interlinked with many other
SDGs. We review here several application domains where DL
and EO play a central role.

1) Sustainable forest management: The relevance of sus-
tainable management of forests is linked directly to SDG 15,
and target 15.2 in particular, but goes well beyond that. Indeed,
the “State of the World’s Forests 2018” report of the Food and
Agriculture Organization (FAO) [220] identifies that forests
and trees are relevant for 28 targets from ten different SDGs.
On the one hand, forests are a key variable to mitigate the
effects of climate change, they protect soil and water, and
contain more than 75% of the world’s terrestrial biodiversity.
On the other hand, forests provide products and services such
as food, medicine, and fuel that are of high socio-economic
importance in particular in rural areas. The combination of RS
and DL has been extensively used to monitor forests, e.g. by
producing global forests maps [86], delineating individual tree
crowns in aerial imagery [221], [222], or performing damage
assessment after storms [223].

Despite their relevance, the loss of the world’s forests
through deforestation and forest degradation is an increas-
ing issue destroying natural habitats, limiting resources
for the world’s poorest and in the long term worsen-
ing climate change by significantly contributing to CO2

emissions. Reasons for deforestation include tree logging
for materials, mining, and farming. Agriculture produc-
ing palm oil, beef, soy, pulp and paper is responsible
for nearly three quarter of tropical deforestation [220].

“Remote sensing is the
ideal tool to monitor
large forests that are
difficult to access”

Deforestation is mostly hap-
pening in rural areas and often
performed in secrecy, which
requires monitoring large re-
gions that are difficult to ac-
cess. Thus, RS is the ideal tool

to map and monitor forest that inspired the publication of
open data (e.g., in the context of the “Understanding the
Amazon from Space” challenge organized by Planet [224]) as
well as the usage of DL approaches. Several works focus on
experimental comparison between different network models

and shallow learners [225], [226] or apply ensembles of
different CNN architectures (e.g., [227] - a participant in the
aforementioned challenge). In [228], deforestation mapping is
modelled via spatio-temporal deep CNNs by taking several
domain-specific components (e.g. handling of clouds) into
account. Modern approaches go beyond a mere mapping of
forest areas or directly deforestation and instead aim for
identifying possible reasons for forest loss. ForestNet [229]
not only proposes a deep convolutional network to characterize
the processes leading to deforestation but also provides a data
set based on Landsat 8 imagery of forest loss events annotated
by expert interpreters.

2) Wildfire risk: Wildfires, as one of the major factors con-
tributing to deforestation, are becoming more frequent and de-
structive due to several reasons including higher temperatures,
increased droughts, fuel accumulation and dead vegetation,
as well as increased population density in close proximity
to forests and wildlands. Traditionally, wildfires are detected
by human observers either by chance (and then reported to
local emergency numbers) or from dedicated watchtowers.
Current works aim to complement or even replace the latter
by deploying ground-based camera networks (e.g., HPWREN
and Alert Wildfire in the State of California, USA, where
in 2018 more than 8,000 wildfires burnt 800,000 hectares
of land). The camera feed of these networks can then be
automatically analyzed by DL approaches as e.g., in [230]
which uses an Inception network to detect smoke. An alter-
native is the usage of UAVs as proposed in [231], which uses
a saliency-based system to generate image region proposals
that are then analyzed by a standard CNN for classification.
Satellite imagery can be used for wildfire detection as well
but comes with its own challenges. Geosynchronous satellites
such as GOES 16 or GOES 17 constantly observe large
parts of a hemisphere but have a rather coarse resolution of
several square kilometers which makes detection of wildfires
in their early stages difficult. Nevertheless, their image data
has been used in combination with DL for wildfire detection
(e.g., in [232]). Orbiting satellites such as MODIS, VIIRS,
Landsat, and Sentinel-1/2, on the other hand, have a much
finer spatial resolution but revisit times of several hours to
days. In particular, SAR sensors offer unique benefits as they
are able to penetrate clouds and smoke and are independent of
daylight. Sentinel-1 time series data and DL have for example
been used in [233] to provide a near real-time progression
monitoring of wildfires.

Beyond detection and monitoring of wildfires, forecasting
their future burns and spread is another important application
area [234], [235]. Bergado et al. [235], use a big geodata set to
predict wildfire burns. They design FCNs for predicting daily
maps of the probability of a wildfire burn over the next 7 days
utilizing an extensive set of wildfire related input variables
taken from various data sources. 29 quantitative features
are selected as input to the models. These features encode
factors associated to wildfire burn such as topography (eleva-
tion, slope, and aspect), weather (temperature, humidity, solar
radiation, rainfall, wind speed and direction, and lightning
flash density), proximity to anthropogenic interfaces (distance
to roads, distance to power lines) and fuel characteristics
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(fuel type, fuel moisture, emissivity). Historical wildfire burn
records for Victoria, Australia, collected over the period of
2006–2017 are used for training and testing the DL models.
DL and RS have also been used for post-event analysis e.g., for
damage assessment [236] or to analyse the impact of wildfires
on tree species [237].

3) Bio-physical parameter estimation: The problem of re-
trieving bio-geophysical parameters spans a wide variety of
applications and has found a direct impact on achieving the
SDGs. The related goals require creating spatially explicit and
temporally-resolved maps of quantities and essential climate
variables to monitor vegetation status and health, agricultural
and forest production. Parameters should be estimated in a
consistent and standardized manner to improve accountabil-
ity. The use and abuse of vegetation indices as proxies of
vegetation status and health has been challenged recently by
machine learning approaches, from nonlinear generalization
of indices [238] to more advanced, yet supervised, machine
learning models [209]. Many parameters are now estimated
using machine learning; for example, surface temperature and
moisture are key parameters for weather prediction with great
impact on agriculture and environment, in ecology, hydrology,
meteorology, and biology, while leaf area index (LAI) and
fractional vegetation cover help in assessing the vegetation
cover and dynamics, with implications on crop production.
Several seminal works relevant for DL parameter retrieval
have been published with focus on Earth Sciences [4], [209],
environmental applications [239], and remote sensing [240].

Land parameter retrieval often concerns bio-chemical pa-
rameters but can also include physical parameters such as
land surface temperature (LST), which was retrieved from
microwave radiometer data with DL in [241], which was
tested on reference data from both ground stations and other
optical satellite data with good results. Leaf-Area-Index (LAI)
and Leaf-Chlorophyll-Content (LCC) have been retrieved with
optical sensors and using neural networks, yet mostly using
shallow architectures [242].

Retrieving parameters can be often hampered by the scarcity
in measurements and observations to spatialize them with
machine learning. This is the case of relevant parameters
for monitoring the land and vegetation such as canopy water
content (CWC). For such a case, one can resort to radiative
transfer models to generate a look-up-table of expressive
simulations to learn from and upscale it in the Google Earth
Engine globally [243]. There are some other cases where
samples are available in big databases but not sufficiently
complete, with many missing attributes or uncertainty in the
wild. This was the case of important leaf and plant traits, like
phosphorus or nitrogen concentrations, that were not upscaled
until the exploitation of the TRY database along with multi-
sensor fusion and machine learning [244]. Upscaling carbon,
heat and energy fluxes from eddy covariance data has been
recently tackled with all kind of machine learning models and
neural networks in particular. The key parameters for sensing
the health and sensitivity of our warming planet are gross
primary production (GPP) and net ecosystem exchange (NEE).
Their estimation with neural networks and ensemble methods
allow us to quantify global land-atmosphere interactions and

benchmark land surface model simulations [245], [246].
Research in farming applications also relates to biological

parameter retrieval. Often though, the goal is not to use pre-
dictions as parameters in models, but as proxies for the health
condition of crops in so-called smart farming applications. By
monitoring and optimising these vegetation indices the goal
is to increase crop yield. The variables of interest such as
crop type, crop yield, soil moisture and weather variables, can
also be used to model and understand the ecosystems that
farming effects [247]. Most often though, it is applied to data
sets covering only smaller regions of agricultural areas. As
opposed to biological parameter retrieval applications, DL is
frequently used in farming applications. Some country level
work on agriculture has been done for e.g. corn crop yield,
[248] and wheat [249], but little work exists on larger scale
studies where predictions could be used in models. The authors
in [250] provide a comparison of several artificial intelligence
methods on a case study in mid-western USA.

Forest cover, biomass and vegetation height are other types
of biological parameters which are of high importance to
understand and monitor the Earth, with obvious societal and
economical implications. DL has also been applied to this
problem although mostly on continental level scale, e.g. in
[251] used the LSTM networks, while the authors in [252]
modeled forest dynamics over a 28-year period by stacking
time-series and formulating the task as a change-classification
problem, and [253] predicted above ground forest biomass
from Lidar and Landsat 8 data with Stacked Sparse Autoen-
coders (SSAE). The authors in [254] map vegetation height
densely at 10-meter resolution from stacks of Sentinel-2 multi-
spectral optical satellite imagery at country-scale using CNNs
with a regression loss.

4) Wildlife conservation: Global loss of biodiversity is
observed at all levels [255], and mammals are no exception,
with one fifth of them at risk of extinction [256]. Conservation
relies heavily on monitoring to estimate biodiversity, as well as
resources to sustain life and risks related to human activities
(hunting, poaching, expanding agriculture, etc). Despite the
urgency of protecting animal populations, the population mon-
itoring is more often done locally in reserves, by experts on
foot, and hardly meets the scaling and update requirements to
monitor fauna effectively. Due to their larger field of view and
the relatively high revisit time potential, satellites [257] and
– more importantly – drones [258], are considered more and
more for surveying by wildlife ecologists [259], [260]. Drones
open perspectives for monitoring on demand, safe detection
of poachers and estimation of grazing potential. To process
the sheer amount of data collected by drones, researchers are
starting to resort to DL massively, to detect animals in the
wild with object detection pipelines [261]–[264].

“Remote sensing and
deep learning can ac-
celerate conservation
efforts and play a cen-
tral role in the battle
against poaching”

These efforts go hand in
hand with computer vision-
based community efforts aim-
ing at processing wide archives
of camera traps images, i.e.
static cameras placed at strate-
gic locations in reserves [265].
To support research in deep
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learning-based animal conservation, a number of software
suites are being proposed, including AIDE [266], which allows
ecologists to upload their camera traps or aerial survey and to
deploy pre-trained (or own) models in the cloud on Microsoft
Azure. Examples of deployments of AIDE in camera traps
image classification and single animal detection are reported
in Figure 9. The questions of accuracy with respect to animal
size and image resolution, or when related to the ratio of
background vs animal occupancy in the images (the animals
only occupy a fraction of the data collected) are central in
these papers. Detection and tracking of poachers is also on
the rise, with approaches using thermal images at night [267]
or based on deep reinforcement learning [268].

In the context of animal censuses, a question of wide interest
is the time efficiency versus the number of animals these
algorithms miss. Precise counts are of prime importance and a
low recall would force rangers to go through the entire image
collection for verification, which would negate the benefits
of the DL detection pipeline. Recent research compared DL
and citizen science counting methods [269] and concluded
that both led to similar accuracy, with a significant speedup
achieved when using DL. Also, an active research field is
the joining of these two worlds via active learning [270]
algorithms: by allowing interactive back and forth between the
annotators and the DL models, significant speedups, as well as
increased generalization to new campaigns and transfer to new
reserves, has been achieved [271]. Finally, these interactive
pipelines are nowadays made accessible to the large ecological
community, for instance via web-based platforms enabling
interactive annotation guided by DL models classifying or
detecting in the background [266].

IV. CHALLENGES AND FUTURE OPPORTUNITIES

The previous section shows several examples of geospatial
applications where DL and EO allow a systematic investiga-
tion of global phenomena, providing continuous and spatially
consistent information supporting evidence-based decision-
making and local interventions. We expect that the coming
decade will see a surge of research in this direction, with in-
novative methodological developments and with an increase in
the number and scope of applications in support of the SDGs.
However, several questions remain to be addressed: some are
purely scientific, others are at the interface between scientific
communities, stakeholders and decision-makers. Will the EO
scientific community succeed in producing accurate, reliable,
consistent and up-to-date geospatial information? Moreover,
are these results trustworthy for governmental authorities,
stakeholders and local communities? In other words, are DL
models trusted by non-experts, who are in charge of decision-
making and policy development? The success of evidence-
based decision making largely depends on the trust that people
have in the data. Transparent data analysis methods and clear
communication are fundamental to set proper expectations and
build trust between data providers and decision-makers.

A. Open challenges
1) Uncertainty quantification: To be of true value and gain

trust by people, DL models need to provide an indication of

a) Classification of camera traps images

b) Detection in community images

c) Detection in UAV data
Fig. 9. Three deployment cases of the AIDE platform [266] in camera traps
images, on (a) camera traps image classification; (b) on animal detection from
tourists and photographers pictures acquired during a safari (using the ‘Great
Zebra and Giraffe Count’ (GZGC) campaign (http://lila.science/datasets/great-
zebra-giraffe-id)) and (c) detecting wildlife in UAV images in the Kuzikus
reserve in Namibia. In the GZGC case, a typical deployment is shown: a user
is editing the detections, while a model is training in the cloud (bottom right
box); the predictions of the current model (dashed lines) are also used as a
guidance.

the reliability of model predictions. Assigning well-calibrated
uncertainties to model outputs plays a critical role in many
real-world applications. A significant additional benefit of
uncertainty estimates assigned to each data point of the
model output is that this creates a practical interface to more
traditional post-processing steps using Bayesian models at
their core. We can define uncertainty within DL in a twofold
way: inherent to all models is epistemic uncertainty, inherent

http://lila.science/datasets/great-zebra-giraffe-id
http://lila.science/datasets/great-zebra-giraffe-id


IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, VOL. X, NO. X, DECEMBER 2021 15

to all data is aleatoric uncertainty. The former captures the
dissimilarity of unseen data compared to what our model
has been trained on, i.e. samples that lie within the training
distribution have low epistemic uncertainty, samples that are
out-of-distribution (OOD) have high epistemic uncertainty.
Aleatoric uncertainty results from noise inherent in the ob-
servations, such as sensor noise [272]. In addition, there are
uncertainties in the spatial domain that arise, for instance,
when variables are aggregated over spatial units (e.g., districts
or administrative units), resulting in the so-called modifiable
areal unit problem (MAUP). It is thus important to consider
all sources of uncertainties and their propagation through the
whole processing pipeline that affect the quality of the final
product.

2) Data quality quantification for decision making: It is
essential to realize that to support evidence-based policy-
making and promote data-driven policy and decision-making,
the quality of data products must be carefully assessed and
carefully communicated so that non-experts can understand.
On the one hand, we encourage the scientific community to
pay more attention to how data quality is assessed and commu-
nicated. On the other hand, we promote policy developers to
incorporate data uncertainties in the decision-making process
explicitly. In this respect, we recognize the importance of
defining standard data quality measures. Thus, we promote
a tighter collaboration between the scientific community and
policy makers to define standards on quality measures to
quantify the SDG indicators.

3) Model explainability: In addition to uncertainty quantifi-
cation, there is a growing interest in making machine learning
and DL models more interpretable and understandable, aiming
at neural networks that provide human-understandable justi-
fications for their output, leading to insights about the inner
workings [273], [274]. In EO, explainable artificial intelligence
is a relatively new field but is quickly becoming important due
to the implications that trustable black-box models can have
on the usage of DL in societal applications. In the context of
agricultural EO, Campos-Taberner et al. investigated how to
deepen the understanding of a recurrent neural network for
land use classification based on Sentinel-2 time series [121].
In [275], authors studied how land use can be used to explain
automatic prediction of the landscapes scenic value (a form of
cultural ecosystem service). To do so, they used semantic bot-
tlenecks [276] as intermediate layers of a regression network
predicting landscape beauty from Sentinel-2 images. Forcing
the network to choose among human-interpretable solutions,
then recombined linearly, the model allows understanding why
(in terms of land use) the model predicts a given score.

4) Model transferability: One of the greatest challenges
of DL in EO is the often limited model transferability. For
example, a slum mapping DL model trained in Dar es Salaam
is unlikely to produce accurate results in Bangalore or São
Paulo. This happens not only because the RS images may be
affected by different acquisition and radiometric conditions
but also because cities in various parts of the world have
different characteristics and definition of what constitutes a
slum. Despite several studies in domain adaptation and transfer
learning [277], model transferability remains a challenge to

ensure spatial and national consistency of indicators derived
from DL models. Moreover, non-experts might be unaware of
this problem. It is therefore essential that DL model developers
provide clear guidance to users regarding the domain where
the model is expected to produce valid results.

5) Interdisciplinary approach: Addressing global societal
problems requires a vast palette of expertise ranging from RS,
DL algorithms development, advanced computational skills,
as well as domain knowledge in fields such as agriculture,
forestry, ecology, urban management and planning, social
sciences, land administration, animal conservation, etc. It
requires researchers to collaborate and co-design solutions
together with other scientists and engage with stakeholders,
industrial partners, local communities, governmental and non-
governmental organizations. Barriers between different scien-
tific (and non-scientific) communities are often a challenge for
an effective interdisciplinary approach.

B. Future opportunities

In this paper, we recognize the importance of the availability
of data and computational facilities for the success of DL
models. Developments in this direction are offering new op-
portunities to the EO community. For half a century, Earth has
been under continuous observation by satellites to monitor and
understand environmental processes. However, historically, RS
data was foremost available to those governmental agencies,
research institutes, and commercial companies that had direct
access to the corresponding sensors. A mixture of different
political, organizational, and legal reasons made a free distri-
bution of acquired data difficult to impossible, resulting in a
limited number of mostly small data sets [278]. The traditional
approach to developing and testing new methods on small and
local data sets prevails until today. In particular, in the context
of DL, this is problematic as approaches are evaluated on data
sets (often consisting of only a single, small image as, e.g.,
the HSI data set Indian Pines) that do not provide a sufficient
amount of independent test samples.

1) Big and open geodata: Fortunately, during the last years,
large parts of the community have been moving away from
closed data and embraced open science principles such as
FAIR (findable, accessible, interoperable and reusable [279])
and FOSS (free and open-source software [280]). These
developments enable transparent and reproducible scientific
research, allow the distribution and reuse of data and methods,
and lead to more efficient creation of new data products.
This led to open code libraries (such as Open RS http:
//openremotesensing.net) or the IEEE RS Code Library http:
//www.grss-ieee.org/publication-category/rscl), public evalua-
tion servers (such as the IEEE GRSS Data and Algorithm
Standard Evaluation website http://dase.grss-ieee.org), as well
as modern benchmark data sets for a multitude of combina-
tions of EO sensors and tasks which are rapidly replacing older
small-scale data sets. These are more in line with the actual
situation in RS as current EO data has passed the petabyte-
scale and poses common big data challenges regarding volume
(i.e., the amount of data), velocity (i.e., the temporal pace with
which new data is acquired), and variety (i.e., heterogeneity

http://openremotesensing.net
http://openremotesensing.net
http://www.grss-ieee.org/publication-category/rscl
http://www.grss-ieee.org/publication-category/rscl
http://dase.grss-ieee.org
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regarding image acquisition such as sensors types and modes,
environmental factors) [281].

2) Cloud computing infrastructures: New opportunities
are also arising from the availability of cloud comput-
ing infrastructures that allow to visualize and analyze
large-scale data (e.g., Landsat [282] and Sentinel data,
https://scihub.copernicus.eu/) directly in the cloud without the
need for local download, storing, and processing. Examples
include Digital Earth Australia [283], Earth System Data Lab
(ESDL) [284], the Swiss Data Cube [285], the Copernicus
Data and Information Access Services (DIAS) and the Google
Earth Engine [286]. The availability of large and open data
sets in combination with powerful computing infrastructures
set the premise for researchers to work more cohesively on
addressing the environmental and societal challenges of our
time.

3) A global picture of global phenomena: Finally, we want
to remark that the combination of DL and EO offers the
opportunity to obtain a truly global picture of environmental
and societal phenomena that go beyond national boundaries as
opposed to the data typically collected by national statistical
agencies. As discussed in [287], the national-level reporting
structure of the SDGs limits the ability to capture envi-
ronmental phenomena that cross national borders. Moreover,
differences in data collection practices of the national offices
often result in inconsistent data. EO can provide spatially
and temporally consistent data, while DL offers the tools to
extract semantic information in an objective and reproducible
manner. We thus advocate the use of DL and EO to monitor
the progress towards the SDGs and encourage the geoscience
and remote sensing community to play an active role in the
discussion with stakeholders and policymakers.

V. CONCLUSION

We have reviewed the latest developments in the context of
DL for EO and a large number of applications that contribute
to the UN agenda for sustainable development. The combina-
tion of DL and EO appears to be a strategic asset that can play
an essential role in addressing many of the challenges raised
by the UN agenda, and beyond that, some of the most urgent
demands of human societies. Understanding the role of DL
in EO for extracting nationwide geospatial statistical data has
far-reaching societal implications for policy development and
decision making. Going beyond the SDG agenda, DL and EO
can play a significant role in other international agendas such
as the New Urban Agenda (NUA) (https://habitat3.org/the-
new-urban-agenda) or the Sendai framework for disaster risk
reduction.
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Stöcker, J. Crompvoets, S. Ho, A. Schwering, M. Chipofya, C. Schultz,
T. Zein, M. Biraro, B. K. Alemie, R. Wayumba, and K. Kundert,
“Towards innovative geospatial tools for fit-for-purpose land rights
mapping,” Wuhan, pp. 37–43, 2017.
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