Saha, Sudipan and Shahzad, Muhammad and Mou, LiChao and Song, Qian and Zhu, Xiao Xiang (2022) Unsupervised Single-Scene Semantic Segmentation for Earth Observation. IEEE Transactions on Geoscience and Remote Sensing, 60, p. 5228011. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2022.3174651. ISSN 0196-2892.
PDF
- Published version
6MB |
Official URL: https://ieeexplore.ieee.org/document/9773162
Abstract
Earth observation data have huge potential to enrich our knowledge about our planet. An important step in many Earth observation tasks is semantic segmentation. Generally, a large number of pixelwise labeled images are required to train deep models for supervised semantic segmentation. On the contrary, strong intersensor and geographic variations impede the availability of annotated training data in Earth observation. In practice, most Earth observation tasks use only the target scene without assuming availability of any additional scene, labeled or unlabeled. Keeping in mind such constraints, we propose a semantic segmentation method that learns to segment from a single scene, without using any annotation. Earth observation scenes are generally larger than those encountered in typical computer vision datasets. Exploiting this, the proposed method samples smaller unlabeled patches from the scene. For each patch, an alternate view is generated by simple transformations, e.g., addition of noise. Both views are then processed through a two-stream network and weights are iteratively refined using deep clustering, spatial consistency, and contrastive learning in the pixel space. The proposed model automatically segregates the major classes present in the scene and produces the segmentation map. Extensive experiments on four Earth observation datasets collected by different sensors show the effectiveness of the proposed method. Implementation is available at https://gitlab.lrz.de/ai4eo/cd/-/tree/main/unsupContrastiveSemanticSeg.
Item URL in elib: | https://elib.dlr.de/190724/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Unsupervised Single-Scene Semantic Segmentation for Earth Observation | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 60 | ||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2022.3174651 | ||||||||||||||||||||||||
Page Range: | p. 5228011 | ||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Deep learning, self-supervised learning, semantic segmentation, single-scene training | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Song, Qian | ||||||||||||||||||||||||
Deposited On: | 29 Nov 2022 14:14 | ||||||||||||||||||||||||
Last Modified: | 28 Jun 2023 13:56 |
Repository Staff Only: item control page