Wang, Yi and Liu, Chenying and Tiwari, Arti and Silver, Micha and Karnieli, Arnon and Zhu, Xiao Xiang and Albrecht, Conrad M (2022) Deep Semantic Model Fusion for Ancient Agricultural Terrace Detection. In: 2022 IEEE International Conference on Big Data, Big Data 2022, pp. 1-5. 2022 IEEE International Conference on Big Data, 2022-12-17 - 2022-12-20, Osaka, Japan. doi: 10.1109/BigData55660.2022.10020329.
PDF
5MB |
Official URL: https://sites.google.com/view/bigdata-adocs/program#h.v0qd0mij9wnd
Abstract
Discovering ancient agricultural terraces in desert regions is important for the monitoring of long-term climate changes on the Earth's surface. However, traditional ground surveys are both costly and limited in scale. With the increasing accessibility of aerial and satellite data, machine learning techniques bear large potential for the automatic detection and recognition of archaeological landscapes. In this paper, we propose a deep semantic model fusion method for ancient agricultural terrace detection. The input data includes aerial images and LiDAR generated terrain features in the Negev desert. Two deep semantic segmentation models, namely DeepLabv3+ and UNet, with EfficientNet backbone, are trained and fused to provide segmentation maps of ancient terraces and walls. The proposed method won the first prize in the International AI Archaeology Challenge. Codes are available at https://github.com/wangyi111/international-archaeology-ai-challenge.
Item URL in elib: | https://elib.dlr.de/190710/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||||||
Title: | Deep Semantic Model Fusion for Ancient Agricultural Terrace Detection | ||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | 2022 IEEE International Conference on Big Data, Big Data 2022 | ||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||||||
DOI: | 10.1109/BigData55660.2022.10020329 | ||||||||||||||||||||||||||||||||
Page Range: | pp. 1-5 | ||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||
Keywords: | deep learning, archaeology | ||||||||||||||||||||||||||||||||
Event Title: | 2022 IEEE International Conference on Big Data | ||||||||||||||||||||||||||||||||
Event Location: | Osaka, Japan | ||||||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||||||
Event Start Date: | 17 December 2022 | ||||||||||||||||||||||||||||||||
Event End Date: | 20 December 2022 | ||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||||||
Deposited By: | Wang, Yi | ||||||||||||||||||||||||||||||||
Deposited On: | 25 Nov 2022 11:39 | ||||||||||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:51 |
Repository Staff Only: item control page