Qian, Kun and Wang, Yuanyuan and Zhu, Xiao Xiang (2022) Potential of Deep Learning in SAR Tomographic Inversion of Very Small Interferometric Stacks. In: Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, pp. 1-6. EUSAR 2022, 2022-07-25 - 2022-07-27, Leipzig, Germany. ISSN 2197-4403.
PDF
5MB |
Official URL: https://www.vde-verlag.de/proceedings-en/455823090.html
Abstract
SAR tomography (TomoSAR) has been extensively applied in 3-D reconstruction in dense urban areas. Compressive sensing (CS)-based algorithms are generally considered as the state-of-the-art methods in super-resolving TomoSAR, in particular in the single-look case. TomoSAR algorithms, including the CS-based ones, usually require a fairly large number of images to achieve a reliable reconstruction, because large error and especially bias occur in low number of measurements. In addition, CS-based algorithms are extremely computationally expensive due to their sparse reconstruction. These factors hinder their practical use. This paper demonstrates the potential of a novel and computationally efficient deep learning algorithm for TomoSAR on very small interferometric stacks. Investigation of the super-resolution ability shows that the proposed algorithm outperforms the state-of-the-art CS-based TomoSAR algorithm by a fair margin when limited acquisitions are available. Test on real TanDEM-X data with 6 interferograms also shows high-quality 3-D reconstruction.
Item URL in elib: | https://elib.dlr.de/190676/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Potential of Deep Learning in SAR Tomographic Inversion of Very Small Interferometric Stacks | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2022 | ||||||||||||||||
Journal or Publication Title: | Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
Page Range: | pp. 1-6 | ||||||||||||||||
ISSN: | 2197-4403 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | SAR Tomography, Deep learning, Small interferometric stacks | ||||||||||||||||
Event Title: | EUSAR 2022 | ||||||||||||||||
Event Location: | Leipzig, Germany | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 25 July 2022 | ||||||||||||||||
Event End Date: | 27 July 2022 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - SAR methods, R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Wang, Yi | ||||||||||||||||
Deposited On: | 25 Nov 2022 10:16 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:51 |
Repository Staff Only: item control page