Qian, Kun und Wang, Yuanyuan und Zhu, Xiao Xiang (2022) Potential of Deep Learning in SAR Tomographic Inversion of Very Small Interferometric Stacks. In: Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, Seiten 1-6. EUSAR 2022, 2022-07-25 - 2022-07-27, Leipzig, Germany. ISSN 2197-4403.
PDF
5MB |
Offizielle URL: https://www.vde-verlag.de/proceedings-en/455823090.html
Kurzfassung
SAR tomography (TomoSAR) has been extensively applied in 3-D reconstruction in dense urban areas. Compressive sensing (CS)-based algorithms are generally considered as the state-of-the-art methods in super-resolving TomoSAR, in particular in the single-look case. TomoSAR algorithms, including the CS-based ones, usually require a fairly large number of images to achieve a reliable reconstruction, because large error and especially bias occur in low number of measurements. In addition, CS-based algorithms are extremely computationally expensive due to their sparse reconstruction. These factors hinder their practical use. This paper demonstrates the potential of a novel and computationally efficient deep learning algorithm for TomoSAR on very small interferometric stacks. Investigation of the super-resolution ability shows that the proposed algorithm outperforms the state-of-the-art CS-based TomoSAR algorithm by a fair margin when limited acquisitions are available. Test on real TanDEM-X data with 6 interferograms also shows high-quality 3-D reconstruction.
elib-URL des Eintrags: | https://elib.dlr.de/190676/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Potential of Deep Learning in SAR Tomographic Inversion of Very Small Interferometric Stacks | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2022 | ||||||||||||||||
Erschienen in: | Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Seitenbereich: | Seiten 1-6 | ||||||||||||||||
ISSN: | 2197-4403 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | SAR Tomography, Deep learning, Small interferometric stacks | ||||||||||||||||
Veranstaltungstitel: | EUSAR 2022 | ||||||||||||||||
Veranstaltungsort: | Leipzig, Germany | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 25 Juli 2022 | ||||||||||||||||
Veranstaltungsende: | 27 Juli 2022 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden, R - Künstliche Intelligenz | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Wang, Yi | ||||||||||||||||
Hinterlegt am: | 25 Nov 2022 10:16 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags