Röstel, Lennart und Sievers, Leon und Pitz, Johannes und Bäuml, Berthold (2022) Learning a State Estimator for Tactile In-Hand Manipulation. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022), 2022-10-23 - 2022-10-27, Kyoto, Japan. doi: 10.1109/IROS47612.2022.9981730. ISBN 978-166547927-1. ISSN 2153-0858.
PDF
5MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9981730
Kurzfassung
We study the problem of estimating the pose of an object which is being manipulated by a multi-fingered robotic hand by only using proprioceptive feedback. To address this challenging problem, we propose a novel variant of differentiable particle filters, which combines two key extensions. First, our learned proposal distribution incorporates recent measurements in a way that mitigates weight degeneracy. Second, the particle update works on non-euclidean manifolds like Lie-groups, enabling learning-based pose estimation in 3D on SE(3). We show that the method can represent the rich and often multi-modal distributions over poses that arise in tactile state estimation. The models are trained in simulation, but by using domain randomization, we obtain state estimators that can be employed for pose estimation on a real robotic hand (equipped with joint torque sensors). Moreover, the estimator runs fast, allowing for online usage with update rates of more than 100 Hz on a single CPU core. We quantitatively evaluate our method and benchmark it against other approaches in simulation. We also show qualitative experiments on the real torque-controlled DLR-Hand II.
elib-URL des Eintrags: | https://elib.dlr.de/190608/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Learning a State Estimator for Tactile In-Hand Manipulation | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2 November 2022 | ||||||||||||||||||||
Erschienen in: | 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/IROS47612.2022.9981730 | ||||||||||||||||||||
ISSN: | 2153-0858 | ||||||||||||||||||||
ISBN: | 978-166547927-1 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | State Estimation, In-hand Manipulation | ||||||||||||||||||||
Veranstaltungstitel: | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2022) | ||||||||||||||||||||
Veranstaltungsort: | Kyoto, Japan | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 23 Oktober 2022 | ||||||||||||||||||||
Veranstaltungsende: | 27 Oktober 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Autonome, lernende Roboter [RO] | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Autonomie und Fernprogrammierung | ||||||||||||||||||||
Hinterlegt von: | Röstel, Lennart | ||||||||||||||||||||
Hinterlegt am: | 14 Dez 2022 17:27 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags