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Abstract— We study the problem of estimating the pose of an

object which is being manipulated by a multi-fingered robotic

hand by only using proprioceptive feedback. To address this

challenging problem, we propose a novel variant of differ-

entiable particle filters, which combines two key extensions.

First, our learned proposal distribution incorporates recent

measurements in a way that mitigates weight degeneracy.

Second, the particle update works on non-euclidean manifolds

like Lie-groups, enabling learning-based pose estimation in 3D

on SE(3). We show that the method can represent the rich and

often multi-modal distributions over poses that arise in tactile

state estimation. The models are trained in simulation, but by

using domain randomization, we obtain state estimators that

can be employed for pose estimation on a real robotic hand

(equipped with joint torque sensors). Moreover, the estimator

runs fast, allowing for online usage with update rates of more

than 100 Hz on a single CPU core. We quantitatively evaluate

our method and benchmark it against other approaches in

simulation. We also show qualitative experiments on the real

torque-controlled DLR-Hand II.

I. INTRODUCTION

Humans are able to locate and manipulate objects only
by proprioceptive and haptic feedback. When we manipulate
an object in our hands, we don’t require constant visual
feedback; our hands can even be out of sight completely.
In contrast, manipulation in the context of robotics today is
often driven by the availability of vision. For example, in
their seminal work on fine manipulation, OpenAI [1] train a
dedicated model to predict the pose of a Rubic’s Cube, where
the training data is generated by renderings in simulation. For
the transfer to the real-world setup, a rig with three calibrated
cameras is required, capturing the scene from multiple an-
gles. However, in many situations encountered in the real
world, obtaining visual information may be impracticable.
Inspired by this, we explore techniques that enable robotic
systems to perform manipulation by only utilizing tactile
feedback. More specifically, we train a system that estimates
the 3D pose of an object only based on joint measurements
(i.e., the configuration of the fingers) and contact information
(here via joint torque sensors). Fig. 1 shows a real-world
experiment using the DLR-Hand II [2]. Performing purely
tactile state estimation brings unique challenges:

• Any single tactile measurement rarely uniquely deter-
mines the pose of an object. A key requirement is
therefore to model the resulting distributions in the
space of object poses. We observe that when manip-
ulating everyday objects in 3D, highly non-Gaussian,
often multimodal distributions arise (see Fig. 2).
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Fig. 1. Purely tactile in-hand pose estimation with the DLR-Hand II [2],
where contacts with the fingers are detected based on the hand’s torque
sensors (see Section IV for details). Many everyday objects, like the mug
shown here, exhibit apparent symmetries; the same tactile measurement can
be compatible with multiple poses, often infinitely many. A state estimator
addressing this problem should be able to represent the rich, multimodal
belief distributions that arise in these settings.

• The dynamics induced by the contact-based interactions
between the fingers and an object are highly non-linear.

We address these challenges by employing a variant of
differentiable particle filters (DPF) [3, 4], which we train
from data generated in simulation, where ground truth states
are available. We show that the obtained algorithm can
capture the pose distributions that emerge in the context of
tactile state estimation. Our key contributions are:

• Extending existing works on DPFs [3, 4], we present
a method for learning more informed proposal dis-
tributions that incorporate recent measurements into
the propagation of particles while mitigating weight
degeneracy.

• We introduce principled update rules for DPFs on non-
euclidean manifolds like Lie-groups, enabling learning-
based pose estimation in 3D.

• We apply our proposed method to the challenging task
of localizing a known object while using only proprio-
ceptive feedback from a multi-fingered humanoid hand.
We show that the learned proposal distributions lead to
more informed particle updates, improving reliability
and performance over alternative approaches for tasks
with non-Gaussian, multimodal belief distributions.

• We show that the models, learned entirely in simulation,
can be transferred to real robotic in-hand manipulation
tasks and that the filter runs online at 100 Hz with 100
particles on a single CPU core.

Related Work

Many previous methods addressing the problem of tactile
localization rely on Bayesian filters that are specifically



Fig. 2. Illustration of a simplified tactile localization setting. The position
of the black rectangle is to be estimated. The ground truth position (black)
is not directly observable. The current probability density (belief) for the
center of the square is depicted in blue. 1) Initial estimate of the object
pose. 2) During a first sweep with a touch-sensitive probe (red), no contact
is observed. This leads to a transformation of the initial distribution by
elimination of hypothesis. 3,4) After further movements with no contact
measurements, the resulting distribution becomes bi-modal and highly non-
Gaussian. 5) The probe hits the target, producing a contact measurement.
The resulting distribution in pose space collapses to a submanifold, a so-
called contact manifold (see Koval et al. [5]).

designed to deal with the challenges of tactile state esti-
mation. For example, Pfanne and Chalon [6] introduce an
approach for tracking the pose of a grasped object based
on the Extended Kalman Filter (EKF). However, when the
initial uncertainty is large or if there are ambiguities due to
apparent object symmetries (Fig. 1), belief distributions are,
in general, non-Gaussian or even multi-modal, violating the
assumption made by the EKF. In these situations, particle
filters have been employed [7, 8, 5], enabling the approxi-
mation of, in principle, arbitrary belief distributions. Vezzani
et al. [8] study pose estimation of static objects with known
geometry by obtaining the cartesian position of contact points
from capacitive tactile hardware. Our approach can be used
in a manner that is agnostic to the exact location of con-
tacts; we perform state estimation only from measured joint
angles and control input and also consider dynamic objects.
Wirnshofer et al. [7] propose a simulation-based particle
filter for pose estimation in contact-rich environments with
compliantly controlled robots. Unfortunately, the approach
is computationally demanding, requiring a contact-based
physics simulation for each particle instance. Conversely, in
our learning-based approach, we use a rigid-body simulation
only to generate training data a priori, but once employed, the
obtained state estimator is computationally cheap, enabling
fast online pose estimation with limited compute resources.

A limitation of particle filters that propagate particles by
the dynamic model is particle starvation; when in any update
step the measurement likelihood function is high in a region
of the state space in which there are only few particles, the
resulting posterior will be poorly approximated. Koval et al.
[5] address this issue by sampling particles from so-called
contact manifolds (see Fig. 2) which are represented as a set
of precomputed poses. We address the problem of particle
starvation through a learned generative proposal distribution
that moves particles towards regions of high likelihood in
the state space.

The previously discussed methods are Bayesian filters
with carefully handcrafted observation models and motion
priors. However, designing these models is challenging in
the general case of a multi-fingered hand interacting with
arbitrary objects. Differentiable Bayesian filters [9, 10, 3] are
a class of learning-based methods which enable data-driven

optimization of models while maintaining explainability and
structured ways of dealing with uncertainty as provided by
Bayesian Filters. Previous works on differentiable particle
filters primarily studied visual localization tasks with high-
dimensional visual input but often assume simple or known
dynamics [3, 4, 11]. In contrast, in case of the tactile state
estimation tasks studied here, inputs are lower-dimensional,
but the contact-induced dynamics are highly non-linear in
a comparably high-dimensional state space. In this work, to
our knowledge for the first time, we show how differentiable
particle filters can be successfully applied in the regime of
in-hand manipulation with a multi-fingered hand, including
principled state estimation for non-euclidean manifolds in
3D.

II. BACKGROUND ON FILTERING

A. Bayesian Filtering

Given an initial prior distribution p(x0) as well as ob-
servations zt and control inputs ut at discrete time steps
t = 1, ..., T , the goal of filtering is to estimate the posterior
or belief distribution B(xt) = p(xt|x0:t�1, z1:t, u1:t) over the
state xt 2 S . Under the assumption that the Markov property
holds for the state xt (i.a. p(zt|xt, z1:t�1) = p(zt|xt)), at
any given time step t, this posterior distribution summarizes
the information about the history of observations z1:t =
z1, z2, ..., zt and control inputs u1:t and is, therefore, a
sufficient statistic for the trajectory up to t. Bayes Filters
recursively estimate B(xt) by combining incoming zt and
ut with the previous posterior estimate B(xt�1).

B. Particle Filters

Particle filters [12] approximate the belief as a finite set
of tuples hx(i), w(i)i where each particle i = 1, ..., N is a
weighted sample comprising a state x(i) 2 S and weight
w(i) 2 [0, 1]. Formally, the belief can be written as

B(xt) ⇡
NX

i=1

w(i)�(xt � x(i)
t ), (1)

where � is the Dirac delta function. B(xt) is normalized ifP
i w

(i) = 1.
In general, sampling B(xt) to obtain samples x(i) is not

possible because B(xt) is unknown. However, using a known
distribution q, we can obtain samples x(i) by importance
sampling. In general, q may depend on the full history of
observations. Here we consider drawing samples from q of
the form

x(i)
t ⇠ q(·|x(i)

t�1, zt, ut), (2)

and compute the importance weights w(i)
t as

w(i)
t = w(i)

t�1

p(zt|x(i)
t )p(x(i)

t |x(i)
t�1, ut)

q(x(i)
t |x(i)

t�1, zt, ut)
. (3)

The conditional distribution p(zt|xt) is often referred to
as the observation or measurement model. The distribution
p(xt|xt�1, ut) predicts the next state given the current state



and the control input and is usually referred to as the motion

model. The recursion of (2) and (3), and the normalization
of weights results in the particle filter algorithm. Often
an additional resampling step is included where particles
are duplicated in proportion to their weight and particles
with smaller weights are dropped. In (2), in principle, any
tractable proposal distribution q can be used for importance
sampling. A popular choice is to sample from the motion
model, i.e., q(x(i)

t |x(i)
t�1, zt, ut) = p(x(i)

t |x(i)
t�1, ut). We will

refer to this proposal as the standard proposal [13].
A major downside of the standard proposal is that it is

agnostic to observations in the sampling of new particles,
resulting in the problem of particle starvation in the context
of tactile pose estimation [5]. Particle starvation can be
mitigated by conditioning the proposal on the most recent
observation zt, allowing particles to be moved towards re-
gions of high observation likelihood in the state space [14, 8].
However, scoring samples drawn from any q (compare [15])
and computing importance weights as in (3) can lead to
highly noisy weight updates, preventing the emergence of
expressive particle distributions. In these regards, a proposal
distribution incorporating measurements with particularly
nice properties is

q(x(i)
t |x(i)

t�1, zt, ut) = p(x(i)
t |x(i)

t�1, zt, ut). (4)

This proposal is often referred to as the “optimal” proposal1
[16, 13], where “optimal” refers to the fact that the update
step results in minimal variance of the weights for a sample
x(i)
t given zt, ut and x(i)

t�1 [16]; the weight update for the
“optimal” proposal becomes

w(i)
t / w(i)

t�1p(zt|x
(i)
t�1, ut). (5)

Sampling from p(xt|xt�1, zt, ut) and evaluating (5) is, how-
ever, notoriously difficult and often only possible for cases
where an analytical expression for the “optimal” proposal
exists [16]. A core element of the approach presented in this
paper is to learn approximations of the “optimal” proposal
from data.

C. Differentiable Particle Filters

Differentiable particle filters [3, 4] combine the algorith-
mic structure of particle filters with neural-network-based
function approximation. In their most basic form, DPFs
can be parametrized by two learned models: A generative

proposal distribution F', used for sampling new particles and
a non-generative update function G' which is used to update
the weights. The learnable parameters ' can be trained end-
to-end to maximize performance through rollouts of the com-
putation graph [3]. Most previous work on DPFs employed
the standard proposal, i.e. F'(xt|xt�1, ut) ⇡ p(xt|xt�1, ut)

and G'(xt, zt) / p(zt|x(i)
t ) [3, 4, 17, 11]. Jonschkowski

1In the literature referenced, the definition of the “optimal” proposal
commonly is q = p(x

(i)
t |x(i)

t�1, zt) because uncontrolled systems are
studied. For this paper, we use the more informed variant of the “optimal”
proposal q = p(x

(i)
t |x(i)

t�1, zt, ut), which is additionally conditioned on
control inputs.

et al. [3] additionally learn a dedicated model to propose
particles based on observations during an initialization phase,
but subsequent particle proposals are done using the standard

proposal. Chen et al. [15] introduce proposal distributions
based on normalizing flows, which may also be conditioned
on observations. However, the influence on the variance of
weight updates (3) was not studied and the parametrization
does not allow for employment on non-euclidean manifolds.

III. DEEP DIFFERENTIABLE PROPOSAL PARTICLE
FILTERS (D2P2F)

We present a DPF-variant for state estimation that in-
corporates recent observations, mitigates weight degeneracy,
and naturally allows for deployment on manifolds like SE(3)
while maintaining end-to-end differentiability.

A. Learned Models

For our DPF variant, the two learned models are a genera-
tive proposal distribution of the form F' = F'(·|x, z, u), ap-
proximating the “optimal” proposal (4), and a non-generative
update model G' implementing the weight update (5).

Rather than defining F on the state manifold S directly,
we use samples � ⇠ F (·) to act locally around a state x 2 S .
We update the i-th particle as:

�(i)
t ⇠ F'(·|x(i)

t�1, zt, ut) (6)

x(i)
t = x(i)

t�1 ��(i)
t , (7)

where the �-operator generalizes addition to non-euclidean
manifolds as described by Hertzberg et al. [18]: In the simple
case that S = Rn, the �-operator is just the vector addition.
If xt is a rotation matrix, the �-operator has the effect of
a rotation around axis � by angle ||�||. The advantage of
this method is that F can simply be defined on the vector
space, i.e. � 2 Rn, yet the updated state is again on the
n-manifold (xt 2 S). Hence, any distribution on Rn that
supports the reparametrization trick can be used to represent
F . We experimented with parametrizing F as conditional
normalizing flows but found no clear advantage over param-
eterization as a normal distribution, which we use in this
work. For sampling from the proposal, for each particle (i),
the concatenation of the conditional (x(i)

t�1, zt, ut) is taken as
input to a feedforward network that predicts the parameters
of the proposal distribution.

The update model G is implemented as a feedforward
neural network,

G'(xt�1, zt, ut) : S ⇥ Rz ⇥ Ru ! R (8)

mapping the concatenation of x(i)
t�1, zt 2 Rz and ut 2 Ru

to a scalar which can be interpreted as unnormalized log-
likelihood. Note that, unlike the update model employed in
previous works on DPFs [3, 4], the input is the particle state
at the previous time step xt�1, following update rule (5).

We denote the DPF with the above parametrization as
Deep Differentiable Proposal Particle Filter (D2P2F) as
summarized in Algorithm 1.



Algorithm 1 Deep Differentiable Proposal Particle Filter

1: Initialize particles: x(i)
0 ⇠ p(x0), 8i = 1, ..., N

2: Initialize weights: logw(i)
0 = � log(N), 8i = 1, ..., N

3: for t = 1, 2... do

4: Obtain: Control input ut, observation zt
5: for i = 1, 2, ..., N do

6: �(i)
t ⇠ F'(·|x(i)

t�1, ut, zt)

7: x(i)
t = x(i)

t�1 ��(i)
t

8: log ŵ(i)
t = logw(i)

t�1 +G'(x
(i)
t�1, zt, ut)

9: end for

10: Normalize: logw(i)
t  log ŵ(i)

t � LSEj log ŵ
(j)
t

11: hx(i), w(i)i  RESAMPLE(hx(i), w(i)i) (optional)
12: end for

B. Learning Objective and Training

For supervised training of the particle filters, we require
that the ground truth target states x̂t are available. When
training data is generated in simulation, this requirement
is usually satisfied at no extra cost. We optimize for the
learnable parameters with gradient-based methods by dif-
ferentiating through rollouts of the algorithm over multiple
timesteps using automatic differentiation similarly to pre-
vious DPF implementations [3, 4]. Gradients through the
proposal distribution are calculated using the reparametriza-
tion trick. The recursive time stepping scheme of the al-
gorithm amounts to backpropagation through time (BPTT).
For our D2P2F, we find that weight degeneracy is less severe
(see Section V-B.3). Therefore, we train without resampling,
bypassing the issue of the non-differentiable resampling step
(compare [3, 4]).

As a learning objective, one could use the distance be-
tween x̂t and the weighted mean of particles [4]. However,
we find that training with this objective encourages unimodal
particle beliefs at inference, whereas belief distributions
that arise in the context of tactile localization are often
multimodal. To account for this, we follow Jonschkowski
et al. [3] and construct a Gaussian-mixture distribution where
each particle constitutes the mean of one component.

We adapt this loss to states on (Lie) manifolds by con-
structing a zero-mean m-dimensional multivariate normal
distribution for each particle (i), where m is the number
of manifolds in the state dimension. Then we evaluate the
density at d(x̂t, x

(i)
t ) 2 Rm, where d(·) is the distance metric

associated with the manifold, leading to the loss function

Lgm = � 1

T

TY

t=1

NX

i=1

w(i)
t N (d(x̂t, x

(i)
t )|0,⌃). (9)

On Lie manifolds, evaluating the normal distribution at
d(x̂t, x

(i)
t ) is justified as long as the covariance matrix ⌃ 2

Rm⇥m is sufficiently small [18]. This is not a limitation
in practice, since by design each particle only contributes
to the density in its vicinity. For simplicity, we assume
⌃ = diag(�1, ...,�m) with hyperparameters �1, ...,�m that

Fig. 3. Left: Simulation setup of the cube rotation task. Right: The learned
model is able to recognize contacts based on the difference between desired
joint angles qd and measured joint angles q.

can be adjusted according to the scale of the manifold.
We normalize all cartesian dimensions of the state space to
zero mean and unit variance and use � = exp (�3) for all
manifolds. Lgm facilitates the emergence of non-Gaussian
belief distributions with multiple modes, which is a critical
property for the tracking of multiple hypotheses that arise
in the context of tactile localization, as we show in our
experiments.

IV. APPLICATION TO 3D IN-HAND POSE ESTIMATION

We now study applications for pose estimation in 3D using
the DLR-Hand II, an anthropomorphic robotic hand [2]. The
hand has four identical fingers, each equipped with four
joints, three of which are actuated independently. For training
in simulation, we use a simulated replica of the hand as
described in Sievers et al. [19], where we assume known
geometric shapes of the hand and the manipulated object.

The observations consist of the measured joint angles
q 2 R12 and joint velocities q̇ 2 R12. The joint measure-
ments are subject to time-invariant Gaussian noise, as well
as a systematic error offset which accounts for modeling
errors [19]. The hand is torque-controlled with a joint-level
impedance control scheme. The control input given to the
filter are the desired joint positions u = qd 2 R12 in each
time step. In this setting, we can detect contacts indirectly
via the high-fidelity torque sensors; the torque ⌧ applied by
the controller is proportional to the difference between qd
and q. Therefore, although measured torques are not directly
observed by the filter, the presence of contacts can be inferred
by observing the discrepancy between qd and q (see Fig. 3).
The full state of the hand-object system is given by the pose
of the object in 3D, given as a rigid body transformation
x 2 SE(3), the translational and rotational velocities of the
object ˙̂x, as well as the (ground truth) state of the finger
joints q̂ and ˙̂q, i.e.

S = SE(3)⇥ R3 ⇥ R3 ⇥ R12 ⇥ R12. (10)

Modeling the intricate dynamics arising from the contact-
based interactions between the hand and the object is chal-
lenging and, in the general case, requires simulating the
interactions using a rigid-body simulator. To account for
uncertain system parameters like friction as well as modeling



errors, we apply extensive domain randomization in simula-
tion, including randomization of masses, the sizes of objects,
and friction coefficients. A more complete description of the
setup in PYBULLET [20] can be found in Sievers et al. [19].

We study pose estimation in two tasks: grasping a mug
with an initially uncertain pose (Section IV-.1) and rotating
a cube inside the hand (Section IV-.2). Our primary goal for
these tasks is pose estimation. Hence, whenever beneficial,
we do not actively estimate the full state vector (10). For the
learning-based approaches, we empirically find that estimat-
ing velocities of objects does not significantly improve (nor
degrade) the accuracy of the pose estimate.

1) Grasping a Mug: For this task (see Fig. 1), we aim to
estimate the pose of a mug [21] during a predefined grasping
motion. The mug is initially placed in an unknown position
underneath the fingers of the hand. The initial displacement
in the xy-plane is sampled uniformly in [�3 cm, 3 cm] and
the height is randomized in [�2 cm, 2 cm] relative to the
reference frame of the hand. Additionally, the mug is placed
upside down by chance (p = 0.5) and rotated at random
uniformly by ✓3 2 [0, 2⇡] around the z-axis orthogonal to the
surface plane. During the grasping motion, the pose of the
mug changes according to the forces exerted by the fingers
and gravity. The details of this behavior strongly depend on
the initial configuration of the mug, as well as the domain
parameters.

2) Rotating a Cube: In this experiment, we estimate the
pose of a cube while it is being rotated inside the hand. The
policy performing the task is a closed-loop controller that
has been obtained by reinforcement learning in simulation
by Sievers et al. [19]. The goal of the policy is to rotate
the cube around the upwards axis (blue axis in Fig. 3).
Observations zt and control inputs ut are obtained with a
frequency of 100 Hz. We infuse the learned state estimator
with knowledge of the rotational symmetry of the cube
by mapping a ⇡/2 rotation in the task space to a full 2⇡
rotation in the state space of the filter. Although we will
use this mapping for comparison with baselines, we later
show that the DPF-based methods are also able to handle
the multimodal beliefs that are induced by non-symmetry-
aware representations.

A. Compared Baselines

We compare our approach with multiple applicable base-
lines, including learning and non-learning-based approaches:

• Our D2P2F as described in Section III, parametrizing
the “optimal” proposal p(xt|xt�1, zt, ut), without re-
sampling.

• A DPF parametrizing the standard proposal
p(xt|xt�1, ut) with soft resampling [4] whenever
the effective sample size [16] falls below the threshold
of N/2.

• A simulation-based particle filter where the motion
model is implemented by a full rigid-body PYBUL-
LET [20] simulation instance for each particle (denoted
as sim-PF). The observation model assigns likelihoods
based on the difference between measured joint angles

TABLE I
MUG GRASPING METRICS

logLgm Ld [mm] Ld [rad]
DPF 159± 85 20± 5 1.8± 0.4
D2P2F 82± 43 15± 5 1.7± 0.4
LSTM 560± 278 20± 6 1.6± 0.5
Sim-PF 161± 143 22± 7 2.2± 0.4

q and joint angles in the i-th simulation instance q(i),
as proposed by Wirnshofer et al. [7].

• As a unimodal baseline we implement a model based on
recurrent neural networks which parametrizes a normal
distribution in state space. Mean and covariance are
predicted by a learned decoder from the hidden state
output of an LSTM [22]. We use a 6D continuous
representation [23] to encode the mean rotation. For
comparison with the particle filter-based methods, we
train the model by sampling the Gaussian in state space
and compute the loss as in (9).

The models are trained separately for each task, but for the
DPF-based models we use a shared set of hyperparameters.
F' and G' are parametrized by multi-layer perceptrons
(MLP) with hidden dimensions [256, 256, 256]. We employ
dropout with rate 0.2 throughout training and inference for
DPF and D2P2F. We optimize using Adam [24] with learning
rate 5 · 10�4. We use N = 50 particles for training and
N = 100 for testing.

B. Performance Metrics

For comparison of the above methods, we employ two
performance metrics. As a simple distance metric, we use
the weighted distance between particles x(i)

t and ground truth
x̂t, averaged over time steps

Ld =
1

T

TX

t=1

NX

i=1

w(i)
t d(x̂t, x

(i)
t ), (11)

reported separately for translational and rotational compo-
nents of the pose. However, the Ld metric does not give
justice to the nature of the highly non-Gaussian belief
distributions in tactile manipulation settings. For this reason,
we also report the logLgm metric (9), which better takes
into account the underlying belief distribution. For the ex-
periments, we report the above metrics for unseen holdout
datasets in simulation, with mean and standard deviation
calculated over 100 rollouts with different configurations.

V. EVALUATION IN SIMULATION

A. Grasping a Mug

We compare the performance metrics for the mug grasping
task in Table I. The D2P2F model performs favorably
when considering the logLgm metric. In Fig. 4 we show
an example rollout of the D2P2F model on a trajectory
from the test set. As can be seen, the model produces
sensible belief distributions which capture the multimodal
nature of apparent object symmetries. When examining the
belief distributions produced by the other models, it becomes



Fig. 4. Exemplary scene from the mug grasping experiment with rollout
produced by the D2P2F model. The weighted particle belief is indicated
in blue with projections of the particle states to the individual components
of the object pose x, y, z, and rotations converted to euler angle angles
✓1 (green), ✓2 (red), ✓3 (blue) for visualization purposes. Ground truth
trajectory is shown in red. Initially, the cartesian position of the object is
unknown, which is reflected by the spread-out particle distribution. For the
rotational degrees of freedom, the model produces two opposite modes,
corresponding to placements of the cup upright and upside down at ✓1 = 0
and ✓1 = ±⇡ (compare Fig. 1), which is caused by the prior induced by the
dataset used for training (see Section IV-.1). 1) As the fingers make contact
with the mug, the particle belief converges to the ground truth position in x
and y components. 2) One finger approaches the rim of the mug, dissolving
the ambiguity of whether or not it was placed upside down (✓1). 3) One
finger touches the bottom of the mug. From the measured joint positions,
the model has learned to infer the relative height of the mug z.

apparent that the unimodal LSTM model fails to account for
this multimodality, predicting a mean somewhere in between
the two modes which is also reflected in the high logLgm.

B. Rotating a Cube

For the cube rotation task, we report the evaluation metrics
in Table II. On this task, the D2P2D and the LSTM baseline
perform comparably well, indicating that, when using the
symmetry-aware representation from Section IV-.2, there is
no major advantage in representing highly non-Gaussian
beliefs. However, we observe that the sim-PF approach fails
to track the target over longer rollouts, which is reflected

TABLE II
CUBE ROTATION METRICS

logLgm Ld [mm] Ld [rad]
DPF 74± 42 11± 3 0.11± 0.04
D2P2F 46± 27 11± 2 0.10± 0.03
LSTM 58± 40 12± 3 0.08± 0.03
Sim-PF 320± 147 465± 1696 0.20± 0.07

Fig. 5. Angle of rotation ✓3 around the vertical axis for a rollout of
the rotation task. Belief distributions produced by learned models (blue)
and ground truth trajectory (red). Top: D2P2F with particles initialized
uniformly. Center: D2P2F with particles initialized near ground truth.
Bottom: Prediction from the LSTM baseline model.

in the large error rate. The reason is that the underlying
policy is a delicate closed-loop controller, for which ut

depends on zt�1. For the sim-PF, this action is then fed to
all instances of the simulation x(i). Critically, applying ut

to a simulation with even slightly different initialization of
domain parameters results in an open-loop controlled system
that can lead to a complete failure of the task (i.e., dropping
the cube).

1) Rotational symmetries lead to multimodal belief distri-

butions: In IV-.2 we assumed that two cube states rotated
by ⇡/2 against each other represent the same orientation.
However, this may not always be the appropriate choice. For
example, if the sides of the cube are colored differently, a
visual state estimator could later be fused with the belief
from the tactile estimator. In Fig. 5, we show estimated
orientations for rollouts of the D2P2F and LSTM models
where the output space now covers the full rotation of the
cube. The D2P2F is able to handle the multimodality induced
by symmetry of the cube and produces a belief distribution
with 4 distinct modes, each ⇡/2 apart. We compare this
to a Gaussian belief distribution produced by the LSTM
baseline model which predicts a mean which is in-between
two modes of the underlying belief, making the estimate
highly unreliable.

2) On-the-fly Estimation of System Parameters: The state
estimation problem can be easily extended by actively es-
timating variables of the domain randomization as part of
the state. To demonstrate this, we train a D2P2F model to
also predict the cube edge length, as well as the mass of
the cube. In Fig. 6 we quantify the prediction by calculating



Fig. 6. Coefficient of determination (R2) during training on the cube
rotation task for cartesian dimensions x, y, z, cube mass and cube edge
length.

Fig. 7. Effective sample size (ESS) averaged over multiple trajectories vs.
time after initialization in the cube rotation task.

the average coefficient of determination over 30 epochs of
training, where we take the mean of particles as the model
prediction. While the edge length of the cube can be reliably
estimated by the D2P2F in an online manner, the mass of the
cube can not be predicted by the model from the motion of
the rotating policy, which results in a more evenly distributed
particle distribution around the data mean in that dimension
(not shown).

3) Weight Degeneracy: The quality of approximation of
the posterior by weighted samples strongly depends on the
distribution of weights. This relation can be characterized
by the effective sample size (ESS)[16], where lower values
indicate that the belief is dominated by fewer particles,
leading to a less expressive posterior distribution. In Fig. 7,
we assess the influence of the learned proposal distribution
on the ESS. The parametrization used for the D2P2F yields
a significantly higher average ESS when compared with the
standard DPF, even after 1000 timesteps without resampling.

VI. REAL WORLD VALIDATION

We transfer the learned models to the physical DLR-Hand
II system. We can verify that for the cube rotation tasks,
the filters are able to track the rotation of the cube over
time frames of several minutes. We also test the real-time
capabilities of the algorithm. Although the implementation in
PyTorch is not optimized for inference, we measure inference
times of < 10ms for 100 particles, enabling fast online
state estimation with update rates of > 100Hz. In the
supplementary video, we show runs of the trained filters for
both the mug and the cube tasks.

VII. CONCLUSION

We proposed a novel differentiable particle filter variant,
the deep proposal differentiable particle filter D2P2F, and
showed its application in the challenging task of tactile 3D
pose estimation with a humanoid hand. We were able to show
that incorporating measurements into the propagation of par-
ticles can be highly beneficial, especially in situations where
belief distributions are non-Gaussian and multimodal. For
this, we performed a quantitative comparison in simulation
to the standard DPF and other learning and non-learning-
based estimation methods. Finally, we validated the filter in
experiments on a real robotic hand, running the filter in real-
time.

In our experiments, contact information was derived solely
by using the torque-controlled joints. To further improve
the quality of the state estimate, in future work, dedicated
tactile hardware like a touch-sensitive skin with high spatio-
temporal resolution [25] could be employed, which can be
integrated within the same framework described in this paper.
Also, we want to be able to actively refine the estimate
by using the belief distributions online as control input.
To make informed decisions in tactile manipulation tasks,
we expect that it is important to respect the multimodal
belief distributions, which can be represented by the methods
proposed in this work.
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