Boerdijk, Wout und Durner, Maximilian und Sundermeyer, Martin und Triebel, Rudolph (2022) Towards Robust Perception of Unknown Objects in the Wild. In: ICRA 2022 workshop on “Robotic Perception and Mapping: Emerging Techniques”. 2022 IEEE International Conference on Robotics and Automation (ICRA) (Workshops), 2022-05-23 - 2022-05-27, Philadelphia.
PDF
14MB |
Kurzfassung
To be able to interact in dynamic and cluttered environments, detection and instance segmentation of only known objects is often not sufficient. Our recently proposed Instance Stereo Transformer (INSTR) addresses this problem by yielding pixel-wise instance masks of unknown items on dominant horizontal surfaces without requiring potentially noisy depth maps. To further boost the application of INSTR in a robotic domain, we propose two improvements: First, we extend the network to semantically label all non-object pixels, and experimentally validate that the additional explicit semantic information further enhances the object instance predictions. Second, knowledge about some detected objects might often readily be available, and we utilize Dropout as approximation of Bayesian inference to robustly classify the detected instances into known and unknown categories. The overall framework is well suited for various robotic applications, e.g. stone segmentation in planetary environments or in an unknown object grasping setting.
elib-URL des Eintrags: | https://elib.dlr.de/190600/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Towards Robust Perception of Unknown Objects in the Wild | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||
Erschienen in: | ICRA 2022 workshop on “Robotic Perception and Mapping: Emerging Techniques” | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Rock Instance Segmentation, Computer Vision, Unknown Object Instance Segmentation | ||||||||||||||||||||
Veranstaltungstitel: | 2022 IEEE International Conference on Robotics and Automation (ICRA) (Workshops) | ||||||||||||||||||||
Veranstaltungsort: | Philadelphia | ||||||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||||||
Veranstaltungsbeginn: | 23 Mai 2022 | ||||||||||||||||||||
Veranstaltungsende: | 27 Mai 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Multisensorielle Weltmodellierung (RM) [RO] | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||
Hinterlegt von: | Boerdijk, Wout | ||||||||||||||||||||
Hinterlegt am: | 02 Dez 2022 17:59 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags