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Abstract—To be able to interact in dynamic and cluttered
environments, detection and instance segmentation of only
known objects is often not sufficient. Our recently proposed
Instance Stereo Transformer (INSTR) [1] addresses this problem
by yielding pixel-wise instance masks of unknown items on
dominant horizontal surfaces without requiring potentially
noisy depth maps. To further boost the application of INSTR
in a robotic domain, we propose two improvements: First, we
extend the network to semantically label all non-object pixels,
and experimentally validate that the additional explicit semantic
information further enhances the object instance predictions.
Second, knowledge about some detected objects might often
readily be available, and we utilize Dropout as approximation
of Bayesian inference to robustly classify the detected instances
into known and unknown categories. The overall framework
is well suited for various robotic applications, e.g. stone seg-
mentation in planetary environments or in an unknown object
grasping setting.

I. INTRODUCTION

INSTR [1] is a transformer-based network that is able to
predict instance-level binary masks for unknown objects on
dominant horizontal surfaces. In contrast to existing methods
relying on depth or RGB-D inputs (e.g. [2], [3]), INSTR
processes a pair of stereo images and is guided to implicitly
reason about geometric information by an auxiliary disparity
loss. This circumvents operating on potentially incomplete
and noisy depth maps, and is well suited to be employed in
dynamic, real-world scenarios [4].

The network poses no assumptions on the environment
regarding object shape, texture or the like, and solely re-
quires a planar surface as indication of object presence.
Yet, in many real-world robotic settings, further semantic
information might be required for successful navigation and
manipulation aside the detection of unknown instances. En
plus, one might readily have knowledge about a particular
subset of objects in the scene. And even if all instances
are perfectly known and categorized, an unknown distraction
object could be present - let it be someone’s forgotten coffee
mug. While INSTR is well suited to detect the cup on a
plane, it treats every object instance as unknown. Addressing
the separation into known and unknown objects is therefore
an important consequential step, and also offers application
of INSTR to anomaly detection, bin sorting or the like.

In this work we propose two modifications to INSTR that
allow to reason about semantics in the scene, and to separate
detected instances into known and unknown objects.
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Fig. 1: Application of INSTR for autonomous rock seg-
mentation and sample extraction on a Lightweight Rover
Unit (LRU) (best viewed magnified and in color).

Regarding the former, jointly predicting semantic and
instance level information is usually referred to as Panoptic
Segmentation (PS) [5]. Concretely, the task is to assign a
semantic label to each pixel as well as to detect and segment
each individual instance. While early work often focuses on
proposal-based segmentation (most prominently [6]), after
the success of DETR [7] many transformer-based architec-
tures have been introduced (e.g. [8], [9]). In our case, we
extend INSTR with a segmentation head and fuse the output
with the instance predictions.

Out-of-Distribution (OOD) detection is an important re-
search area on its own, and for brevity we refer the reader
to e.g. [10] for an extensive overview. To robustly separate
detected instances into known and unknown categories, we
follow previous work on (the approximation of) Bayesian
inference, specifically by utilizing Dropout [11], [12], in the
following referred to as Bayesian Neural Network (BNN).

In summary, our contributions are threefold:

e We extend INSTR to PS and show that explicitly
modeling semantic information aids the object instance
segmentation objective.

« We examine the task of separating the detected instances
into known and unknown categories, and investigate
performance on false-positive detections of INSTR.

o We demonstrate the applicability of INSTR for stone
segmentation in extra-terrestrial environments and
grasping for table clearing, where the BNN well allevi-
ates autonomous object interaction (see also Figure [I).



II. PROPOSED EXTENSIONS
A. Panoptic Segmentation

To further facilitate object instance segmentation we add a
second decoder head which directly upsamples Transformer
Encoder (T Fg,) features into semantic categories (Figure
top right). Since INSTR only considers unknown objects as
instances (or things, as commonly referred to in PS), we
refrain from upsampling semantic object information as this
is implicitly defined by the object query outputs. In other
words, the semantic head only upsamples stuff classes, while
the mask head of INSTR predicts things. As an example, let
us consider background and object as semantic regions. In
addition to the predicted instance tensor I € RbXmaxhxw
with n, object queries and b, h and w being batch size,
height, and width, let S € RX™sXhX® be 3 semantic output
tensor, where n, defines the number of semantic classes (in
case of only predicting the background as semantic class
ng = 1). A complete panoptic prediction tensor P is then
derived with

P = softmazx(concatenate(S,I)). ()
dim=1 dim=1

Notably, softmax-scores are calculated across semantic
and instance information. We further match instance pre-
dictions to their ground truth labels and apply the modified
Dice loss as in [1]. This is easily extendable to multiple
semantic (stuff) categories, yet the prediction of things
of semantic categories other than unknown objects would
require additional means of differentiation, e.g. in the form

of a classification head (as for example in [7]).

B. Separating the Known from the Unknown

We explore two different settings for known / unknown
classification (Figure [2| bottom right) with a ResNet50 [13]
classifier, once with Monte Carlo Dropout (MCD) [11] and a
second model with trainable Concrete Dropout (CD) [12]. It
was shown that dropout can be interpreted as sampling from
an approximate of the posterior distribution p(w|D) (with
w being a set of learnable weights and D = {(z;, y;)~,}
being the training data set). In contrast to using the likelihood
p(y*|x*,w), the approximation of the posterior has the
advantage of incorporating epistemic uncertainty (stemming
from the model’s parameters), thus providing more inter-
pretable uncertainty estimates. In practice, MCD inference
is done by averaging multiple stochastic forward passes to
obtain the model’s predictive mean.

Yet, for well-calibrated uncertainty estimates, the dropout
probability has to be determined well, which can be a
computationally expensive search since it has to be set before
training. To mitigate this, Gal ef al. [12] propose CD as
extension, which allows optimizing the dropout probability
directly, and we refer the reader to the original paper for
further details. Implementation-wise, for the MCD case we
insert a dropout layer before the final classifier layer; for
CD we follow the authors’ implementation and append the
original multi-layer CD perceptron to the ResNet.

TABLE I: Mean IoU [%] on object instance masks across
all scenes of Stereo Instances On Surfaces (STIOS) for both
cameras (rc_visard, Zed). Values in bold denote the best
results.

. rc_visard Zed
Semantic classes
mloU Fl PQ mloU Fl PQ
Background 7743  86.17 7223 7534 8474 73.06 -
_ Background + Table _ 77.72 _ 8649 _ 7035 _ 7548 _ 8502 _ 68.86 _
None (base version) 74.93 84.50 73.27 74.06 83.80 73.52

III. EXPERIMENTS

A. Metrics

For PS we calculate the binary Intersection over Union
(IoU) and F1 score on the matched pairs in a size-sensitive
way - i.e., we summarize binary TP, FP and FN scores over
all objects in a scene before deriving IoU and F1 scores to be
consistent with [1]. Additionally, Panoptic Quality (PQ) [5]
is listed which instead averages across detected instances:

PQ = E(p,g)eTP IoU(p, g)
TP+ 5IFP[+ [FN|
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For the classifier we depict standard ROC and Preci-
sion/Recall curves, and list the ratio for OOD detection.

B. Panoptic Segmentation

We train two INSTR networks on panoptic segmentation
from scratch following the original training schedule of [1],
and list results in Table [l While mean IoU and F1 scores
increase in contrast to the baseline INSTR (bottom row of
Table [T, the PQ decreases. Potentially, the softmax removes
low-probable instances which would otherwise be kept by
evaluating them individually (and independently) with a
sigmoid. Note that the comparison to the plain INSTR is
drawn to emphasize the overall benefit of the panoptic head,
and we leave further comparison with similar frameworks
(e.g. [14]) for future work. Exemplary qualitative results are
depicted in Figure [3]

C. Classification of Known vs. Unknown

To simulate known and unknown objects, we randomly
separate the 15 YCB objects of the STIOS dataset [H into ten
known and five unknown bins. The model from Section [I-BI
is trained for 30 epochs on the first 10,000 images from the
BOP challenge |} where an input is the cropped, masked
RGB detection. We use standard cross entropy loss and
AdamW optimizer, and repeat the training ten times on
different random object separations to avoid any bias on
specific items. The accuracy-wise best performing model on
the validation set is taken for inference. As comparison we
also list the performance without MCD.

!Available at |https://www.dlr.de/rm/en/desktopdefault.
aspx/tabid-17628%gallery/36367

2Available at https://bop.felk.cvut.cz/challenges/
#datasets,
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Fig. 2: Proposed extensions to INSTR (left, gray background): A semantic decoder upsamples T Fg,. features which are
fused with object instance predictions for PS (top right). Object instance predictions are also forwarded to a BNN, here
trained on mug and banana, but not on scissors and potted meat can (bottom right). This allows to further separate objects

into known and unknown instances.

Fig. 3: Exemplary panoptic-like results on STIOS (best
viewed magnified and in color). Semantic classes are back-
ground and table; the orange color denotes the table class,
the background is not colored. All other colors are assigned
randomly. The bottom right image depicts a failure case for
heavily stacked objects.

Figure [] depicts ROC and PR curves for in-distribution
items as well as number of correctly and mis-classified
instances, and the ratio of OOD samples including false-
positive predictions of INSTR for different confidence levels.
Results are averaged across all ten training runs.

Overall, CD performs slightly better on known instances
(ROC / PR curve (top) and green / orange bars (bottom)).
While the MCD model excels at identifying OOD samples
(orange-red bars are comparably lower at higher confi-
dences), the baseline model is spuriously more confident,
which matches the theoretical foundation of the MCD.

Receiver Operating Characteristics Curve Precision / Recall Curve

10 100
08 095 A;
06 £ 090

— Concrete Dropout (AUC: 0.94)
MC Dropout (AUC: 0.91)
— Base Network (AUC: 0.91)

— Concrete Dropout (AUC: 0.82)
MC Dropout (AUC: 0.80)
00 —— Base Network (AUC: 0.80) 015

0.0 02 04 06 08 10 ) 02 04 06 08 10
PR Recall

Fig. 4: Top: ROC and PR curve for in-distribution samples
averaged across ten runs on INSTR predictions of the STIOS
dataset. Bottom: Rate of (mis-)classification, OOD detection
and the performance of false-positive detections of INSTR.
Overall, CD marginally outperforms MCD and the plain
ResNet in our setting.

D. Applications in the Wild

INSTR will be employed for stone segmentation as part of
the ARCHES mission [15], where its task is to identify rocks
in extra-terrestrial environments to either provide instance
masks to a scientist in the ground station for further selection,
or to directly grasp them in an autonomous top-down manner.
Especially for completely autonomous grasp selection it is
vital to only segment stones, and the LRU’s sample extrac-
tion box or its battery packs pose challenging anomalies.
To this end, we train a BNN with CD as in Section [[[-B]
on renderings of OAISYS [16] and a collection of other
objects formed by the 15 YCB objects in STIOS from the
aforementioned BOP dataset. We display quantitative results



Fig. 5: Exemplary BNN predictions for stone segmentation
on the LRU2 (best viewed magnified and in color). Green
and red boxes denote correct and wrong classified instances,
respectively. The number in brackets lists the confidence
for the class stone. For a detailed explanation we refer to

Section |HLD|

in Figure 5] and proceed by shortly discussing the findings: In
the left image, the foot of the lander is identified as unknown
object, but correctly labeled as no stone. The pixel-wise,
artifact-like prediction (in the center, in red) is labeled as
stone, but with a comparably low confidence. In the middle,
the container box (with AprilTags, on the left) and the yellow
battery pack (middle right) are successfully identified as no
stone. based The instance on the right is falsely labeled
as stone, but with lower confidence. The BNN is similarly
applicable to INSTR with PS (Figure[T)), where we hardcode
semantic labels (in this case the surface). A particular failure
case is shown in Figure |Z] (left).

Unknown object instance segmentation is often a pre-
requisite for autonomous grasping, for instance to clear a
table, and INSTR can be paired well with grasping architec-
tures like Contact-GraspNet [17]. Here, instance masks are
used to filter out invalid grasps on e.g. the surface area, and
to reduce inference speed. In Figure [6] the overall framework
is employed on a LWR3 robot arm, and we highlight how
the proposed extensions can be incorporated. Note that both
the panoptic segmentation and the BNN classifier have been
added after runtime. Yet, the qualitative results indicate that
our presented extensions allow INSTR to be robustly applied
for sorting known objects into correct bins, and leaving
the remaining objects for further inspection with e.g. [18].
Finally, a failure case is depicted in Figure [7] (right).

IV. CONCLUSIONS

Robustly perceiving and interacting with unknown objects
in real-world environments is a key challenge in robotic ap-
plications. Detecting and segmenting all available instances
is an important requirement. En plus, systems could benefit
from further semantic information in the environment, or
would like to incorporate readily available information on
(some) of the objects in the scene. In this work, we extended
INSTR to Panoptic Segmentation, providing semantic labels
to all pixels and thereby simultaneously increasing object
instance mask quality. Additionally, we showed that a simple
BNN is well suited to classify known items while importantly
being less confident for unknown encounters. We highlighted
the applicability of the overall pipeline for grasping stones

Fig. 6: INSTR together with Contact-GraspNet [17] for
autonomous table clearing. Initial segmentation masks (top
row) are used to successively (left to right) grasp unknown
objects (middle row). PS increases mask quality (bottom
row), and a classifier supports sorting into known categories
and unknown items. Here, orange colors denote confidences
smaller than 0.8, and red colors denote wrongly labeled
objects. Note that the robot segmentation could be filtered
out by the available hand-eye calibration, and the object on
the right side is the drop-off bin which was not placed outside
the camera view.

Fig. 7: Two failure cases. Left: Multiple falsely detected
items for the task of stone segmentation with the panop-
tic head. Fine-tuning INSTR on the subset of items
(here stones) would increase segmentation performance, as
shown in [4]. Right: The BNN trained on YCB objects
(here extra_large_clamp, mug and pottet_meat_can) mis-
labels the mug, and places low confidence values on the
extra_large_clamp (predictions with confidence larger than
0.8 are colored green, otherwise orange. Red colors denote
false predictions). We believe that the performance can be
enhanced by improving the OOD dataset and further tuning
of the BNN.

in an extra-terrestrial sample collection setting, and for table
clearing in industrial / house-hold applications.
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