Cummings, Sol and Kondmann, Lukas and Zhu, Xiao Xiang (2022) Siamese Attention U-Net for Multi-Class Change Detection. In: 2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022, pp. 211-214. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884834. ISBN 978-166542792-0.
PDF
3MB |
Abstract
Recent developments in deep learning have pushed the capabilities of pixel-wise change detection. This work introduces the winning solution of the DynamicEarthNet WeaklySupervised Multi-Class Change Detection Challenge held at the EARTHVISION Workshop in CVPR 2021. The proposed approach is a pixel-wise change detection network coined Siamese Attention U-Net that incorporates attention mechanisms in the Siamese U-Net architecture. Moreover, this work finds the location of the attention mechanism within the network is crucial in achieving higher performance. Positioning the attention blocks in the up-sample path of the decoder filters noisy lower resolution features and allows for more fine-grained outputs. The impact of architectural changes, alongside training strategies such as semi-supervised learning are also evaluated on the dynamicEarthNet Challenge dataset.
Item URL in elib: | https://elib.dlr.de/190452/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||
Title: | Siamese Attention U-Net for Multi-Class Change Detection | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | July 2022 | ||||||||||||||||
Journal or Publication Title: | 2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9884834 | ||||||||||||||||
Page Range: | pp. 211-214 | ||||||||||||||||
ISBN: | 978-166542792-0 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Remote Sensing, Change Detection, Deep Learning | ||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Kondmann, Lukas | ||||||||||||||||
Deposited On: | 22 Nov 2022 13:20 | ||||||||||||||||
Last Modified: | 28 May 2024 10:27 |
Repository Staff Only: item control page