Cummings, Sol und Kondmann, Lukas und Zhu, Xiao Xiang (2022) Siamese Attention U-Net for Multi-Class Change Detection. In: 2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022, Seiten 211-214. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884834. ISBN 978-166542792-0.
|
PDF
3MB |
Kurzfassung
Recent developments in deep learning have pushed the capabilities of pixel-wise change detection. This work introduces the winning solution of the DynamicEarthNet WeaklySupervised Multi-Class Change Detection Challenge held at the EARTHVISION Workshop in CVPR 2021. The proposed approach is a pixel-wise change detection network coined Siamese Attention U-Net that incorporates attention mechanisms in the Siamese U-Net architecture. Moreover, this work finds the location of the attention mechanism within the network is crucial in achieving higher performance. Positioning the attention blocks in the up-sample path of the decoder filters noisy lower resolution features and allows for more fine-grained outputs. The impact of architectural changes, alongside training strategies such as semi-supervised learning are also evaluated on the dynamicEarthNet Challenge dataset.
| elib-URL des Eintrags: | https://elib.dlr.de/190452/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
| Titel: | Siamese Attention U-Net for Multi-Class Change Detection | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | Juli 2022 | ||||||||||||||||
| Erschienen in: | 2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||
| DOI: | 10.1109/IGARSS46834.2022.9884834 | ||||||||||||||||
| Seitenbereich: | Seiten 211-214 | ||||||||||||||||
| ISBN: | 978-166542792-0 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Remote Sensing, Change Detection, Deep Learning | ||||||||||||||||
| Veranstaltungstitel: | IGARSS 2022 | ||||||||||||||||
| Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||||||
| Veranstaltungsende: | 22 Juli 2022 | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
| Hinterlegt von: | Kondmann, Lukas | ||||||||||||||||
| Hinterlegt am: | 22 Nov 2022 13:20 | ||||||||||||||||
| Letzte Änderung: | 28 Mai 2024 10:27 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags