elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Self-supervised vision transformers for joint SAR-optical representation learning

Wang, Yi and Albrecht, Conrad M and Zhu, Xiao Xiang (2022) Self-supervised vision transformers for joint SAR-optical representation learning. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 139-142. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883983.

[img] PDF
647kB

Official URL: https://ieeexplore.ieee.org/document/9883983

Abstract

Self-supervised learning (SSL) has attracted much interest in remote sensing and Earth observation due to its ability to learn task-agnostic representations without human annotation. While most of the existing SSL works in remote sensing utilize ConvNet backbones and focus on a single modality, we explore the potential of vision transformers (ViTs) for joint SAR-optical representation learning. Based on DINO, a state-of-the-art SSL algorithm that distills knowledge from two augmented views of an input image, we combine SAR and optical imagery by concatenating all channels to a unified input. Subsequently, we randomly mask out channels of one modality as a data augmentation strategy. While training, the model gets fed optical-only, SAR-only, and SAR-optical image pairs learning both inner- and intra-modality representations. Experimental results employing the BigEarthNet-MM dataset demonstrate the benefits of both, the ViT backbones and the proposed multimodal SSL algorithm DINO-MM.

Item URL in elib:https://elib.dlr.de/190386/
Document Type:Conference or Workshop Item (Speech)
Title:Self-supervised vision transformers for joint SAR-optical representation learning
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Wang, YiUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Albrecht, Conrad MUNSPECIFIEDhttps://orcid.org/0009-0009-2422-7289UNSPECIFIED
Zhu, Xiao XiangUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:2022
Journal or Publication Title:International Geoscience and Remote Sensing Symposium (IGARSS)
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:No
DOI:10.1109/IGARSS46834.2022.9883983
Page Range:pp. 139-142
Status:Published
Keywords:Self-supervised learning, vision transformer, multimodal representation learning, remote sensing
Event Title:IGARSS 2022
Event Location:Kuala Lumpur, Malaysia
Event Type:international Conference
Event Start Date:17 July 2022
Event End Date:22 July 2022
Organizer:IEEE GRSS
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Artificial Intelligence
Location: Oberpfaffenhofen
Institutes and Institutions:Remote Sensing Technology Institute > EO Data Science
Deposited By: Wang, Yi
Deposited On:22 Nov 2022 13:14
Last Modified:24 Apr 2024 20:51

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.