Wang, Yi und Albrecht, Conrad M und Zhu, Xiao Xiang (2022) Self-supervised vision transformers for joint SAR-optical representation learning. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 139-142. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883983.
|
PDF
647kB |
Offizielle URL: https://ieeexplore.ieee.org/document/9883983
Kurzfassung
Self-supervised learning (SSL) has attracted much interest in remote sensing and Earth observation due to its ability to learn task-agnostic representations without human annotation. While most of the existing SSL works in remote sensing utilize ConvNet backbones and focus on a single modality, we explore the potential of vision transformers (ViTs) for joint SAR-optical representation learning. Based on DINO, a state-of-the-art SSL algorithm that distills knowledge from two augmented views of an input image, we combine SAR and optical imagery by concatenating all channels to a unified input. Subsequently, we randomly mask out channels of one modality as a data augmentation strategy. While training, the model gets fed optical-only, SAR-only, and SAR-optical image pairs learning both inner- and intra-modality representations. Experimental results employing the BigEarthNet-MM dataset demonstrate the benefits of both, the ViT backbones and the proposed multimodal SSL algorithm DINO-MM.
| elib-URL des Eintrags: | https://elib.dlr.de/190386/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | Self-supervised vision transformers for joint SAR-optical representation learning | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 2022 | ||||||||||||||||
| Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| DOI: | 10.1109/IGARSS46834.2022.9883983 | ||||||||||||||||
| Seitenbereich: | Seiten 139-142 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Self-supervised learning, vision transformer, multimodal representation learning, remote sensing | ||||||||||||||||
| Veranstaltungstitel: | IGARSS 2022 | ||||||||||||||||
| Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||||||
| Veranstaltungsende: | 22 Juli 2022 | ||||||||||||||||
| Veranstalter : | IEEE GRSS | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
| Hinterlegt von: | Wang, Yi | ||||||||||||||||
| Hinterlegt am: | 22 Nov 2022 13:14 | ||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags