elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Deep Learning for Mapping Tropical Forests with TanDEM-X Bistatic InSAR Data

Bueso Bello, Jose Luis und Carcereri, Daniel und Martone, Michele und Gonzalez, Carolina und Posovszky, Philipp und Rizzoli, Paola (2022) Deep Learning for Mapping Tropical Forests with TanDEM-X Bistatic InSAR Data. Remote Sensing, 14 (3981). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs14163981. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
15MB

Offizielle URL: https://www.mdpi.com/2072-4292/14/16/3981

Kurzfassung

The TanDEM-X synthetic aperture radar (SAR) system allows for the recording of bistatic interferometric SAR (InSAR) acquisitions, which provide additional information to the common amplitude images acquired by monostatic SAR systems. More concretely, the volume decorrelation factor, which can be derived from the bistatic interferometric coherence, is a reliable indicator of the presence of vegetation and it was used as main input feature for the generation of the global TanDEM-X forest/non-forest map, by means of a clustering algorithm. In this work, we investigate the capabilities of deep Convolutional Neural Networks (CNNs) for mapping tropical forests at large-scale using TanDEM-X InSAR data. For this purpose, we rely on a U-Net architecture, which takes as input a set of feature maps selected on the basis of previous preparatory works. Moreover, we design an ad hoc training strategy, aimed at developing a robust model for global mapping purposes, which has to properly manage the large variety of different acquisition geometries characterizing the TanDEM-X global data set. In addition to detecting forest/non-forest areas, the CNN has also been trained to detect water surfaces, which are typically characterized by low values of coherence. By applying the proposed method on single TanDEM-X images, we achieved a significant performance improvement with respect to the baseline clustering approach, with an average F-score increase of 0.13. We then applied such a model for mapping the entire Amazon rainforest, as well as the other tropical forests in Central Africa and South-East Asia, in order to test its robustness and generalization capabilities, and we observed that forests are typically well detected as contour closed regions and that water classification is reliable, too. Finally, the generated maps show a great potential for mapping temporal changes occurring over forested areas and can be used for generating large-scale maps of deforestation.

elib-URL des Eintrags:https://elib.dlr.de/190328/
Dokumentart:Zeitschriftenbeitrag
Titel:Deep Learning for Mapping Tropical Forests with TanDEM-X Bistatic InSAR Data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bueso Bello, Jose LuisNICHT SPEZIFIZIERThttps://orcid.org/0000-0003-3464-2186NICHT SPEZIFIZIERT
Carcereri, DanielNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Martone, MicheleNICHT SPEZIFIZIERThttps://orcid.org/0000-0002-4601-6599NICHT SPEZIFIZIERT
Gonzalez, CarolinaNICHT SPEZIFIZIERThttps://orcid.org/0000-0002-9340-1887NICHT SPEZIFIZIERT
Posovszky, PhilippNICHT SPEZIFIZIERThttps://orcid.org/0000-0003-0656-3691NICHT SPEZIFIZIERT
Rizzoli, PaolaNICHT SPEZIFIZIERThttps://orcid.org/0000-0001-9118-2732NICHT SPEZIFIZIERT
Datum:16 August 2022
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:14
DOI:10.3390/rs14163981
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:synthetic aperture radar; forest mapping; deforestation monitoring; deep learning; convolutional neural networks; TanDEM-X
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Unterstützung TerraSAR-X/TanDEM-X Betrieb
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme
Institut für Hochfrequenztechnik und Radarsysteme > Satelliten-SAR-Systeme
Hinterlegt von: Bueso Bello, Jose Luis
Hinterlegt am:21 Nov 2022 06:33
Letzte Änderung:21 Feb 2024 17:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.