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Abstract: The TanDEM-X synthetic aperture radar (SAR) system allows for the recording of bistatic
interferometric SAR (InSAR) acquisitions, which provide additional information to the common
amplitude images acquired by monostatic SAR systems. More concretely, the volume decorrelation
factor, which can be derived from the bistatic interferometric coherence, is a reliable indicator of
the presence of vegetation and it was used as main input feature for the generation of the global
TanDEM-X forest/non-forest map, by means of a clustering algorithm. In this work, we investigate
the capabilities of deep Convolutional Neural Networks (CNNs) for mapping tropical forests at
large-scale using TanDEM-X InSAR data. For this purpose, we rely on a U-Net architecture, which
takes as input a set of feature maps selected on the basis of previous preparatory works. Moreover, we
design an ad hoc training strategy, aimed at developing a robust model for global mapping purposes,
which has to properly manage the large variety of different acquisition geometries characterizing the
TanDEM-X global data set. In addition to detecting forest/non-forest areas, the CNN has also been
trained to detect water surfaces, which are typically characterized by low values of coherence. By
applying the proposed method on single TanDEM-X images, we achieved a significant performance
improvement with respect to the baseline clustering approach, with an average F-score increase of
0.13. We then applied such a model for mapping the entire Amazon rainforest, as well as the other
tropical forests in Central Africa and South-East Asia, in order to test its robustness and generalization
capabilities, and we observed that forests are typically well detected as contour closed regions and
that water classification is reliable, too. Finally, the generated maps show a great potential for
mapping temporal changes occurring over forested areas and can be used for generating large-scale
maps of deforestation.

Keywords: synthetic aperture radar; forest mapping; deforestation monitoring; deep learning;
convolutional neural networks; TanDEM-X

1. Introduction

Forests are one of the key players for the environment of our planet. Covering around
30% of our planet’s landmasses, they reduce the concentration of carbon dioxide in the
atmosphere, converting it to oxygen and mitigating the effects of climate change. Moreover,
forests are fundamental for preserving biodiversity, e.g., by contrasting soil erosion and
serving as natural habitat to a huge variety of animal species. Human activities, such as
illegal deforestation and selective logging, and natural hazards, such as fires and winds,
accelerate forest loss and degradation, which is nowadays occurring at an alarming rate.
Particularly affected by such events are the tropical forests, which cover around 7% of the
Earth and give shelter to half of the world’s animal and plant species [1–3].

To monitor the development of forest coverage and biomass variations, the generation
of large-scale forest maps over tropical areas is of paramount importance. Global and large-
scale forest maps at high resolutions have been derived in the past, mainly based on optical
or hyperspectral data. For example, at coarse resolutions in the order of a few kilometers,
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the land cover classification maps based on AVHRR data [4] and on MERIS data [5] and
the percent tree cover map from MODIS data [6] are available. In [7] a complete world
forest coverage map at 30 m resolution was derived from Landsat optical data, including
forests changes between 2000 and 2015. More recent global maps of land cover based
on optical data and generated at 10 m resolution are the Finer Resolution Observation
and Monitoring of Global Land Cover (FROM-GLC) map from 2017 [8] and the recently
released ESA WorldCover 2020 [9]. This last one includes a tree cover layer mainly based
on Sentinel-2 data (88% of the input products). However, it is well known that approaches
based on only optical data suffer from the presence of clouds, which may lead to gaps in
the data. This phenomenon is particularly critical over tropical forests, characterized by
long rainy seasons which almost completely hide the ground from view for several months
per year. In this context, synthetic aperture radar (SAR) systems are an attractive solution
to monitor such areas due to their capability of acquiring data almost independently from
weather and daylight conditions. The first global forest coverage map based on SAR images
was generated from the L-band ALOS-PALSAR satellite data, based on cross-polarization
backscatter images and provided at a posting of 25 m [10]. Recently, the capabilities of
interferometric SAR (InSAR) systems to monitor vegetated areas, and especially the added
value of the interferometric coherence, have been demonstrated as well [11,12].

The TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) mission was
the first InSAR mission acquiring bistatic images over the complete Earth’s landmasses. The
two twin satellites—TerraSAR-X and TanDEM-X—flew in close orbit formation, constitut-
ing a single-pass interferometer with configurable baselines, which enables high-resolution
interferometric surveys [13,14]. The main goal of the mission was the generation of a global
digital elevation model (DEM) at a spatial resolution of 12 m. The two global acquisitions,
acquired between 2011 and 2016, were exploited together with additional acquisitions over
difficult terrain to generate a DEM with unprecedented accuracy [15,16]. Besides the nomi-
nal DEM product, for each TanDEM-X bistatic acquisition, characterized by the absence of
temporal decorrelation, additional quantities, such as the absolutely calibrated backscatter,
the interferometric phase and the interferometric coherence, are available. More concretely,
the volume decorrelation factor [17,18], derived from the interferometric coherence, was the
main input feature for the generation of the global TanDEM-X forest/non-forest (FNF) map
at 50 m resolution, based on a fuzzy clustering algorithm [12]. Local maps at national scale
were generated at a finer resolution (12 m × 12 m) using an enhanced version of the forest
classification approach, aimed to preserve both global classification accuracy and local
precision due to the introduction of non-local filtering for the estimation and denoising of
the interferometric coherence [19].

In the last few years, deep learning (DL) approaches have started to significantly
impact remote sensing applications [20,21]. In particular, Convolutional Neural Networks
(CNNs) have shown great potential to exploit the nature of SAR images for different ap-
plications, such as land cover classification, object detection or despeckling [22]. In the
case of forest classification with TanDEM-X bistatic InSAR data, in [23] three state-of-the-
art CNN architectures were investigated for the generation of binary classification maps
through semantic segmentation, namely a residual network (ResNet) [24], a dense network
(DenseNet) [25] and a U-shaped network (U-Net) [26]. Different combinations of input fea-
tures, including backscatter, coherence and volume decorrelation, were fed to the different
CNNs, aiming at assessing their impact on the final classification accuracy. Among all the
analysed models, the U-Net architecture showed the best overall performance. Moreover,
this study was conducted on a small set of single TanDEM-X images at full resolution over
a temperate forest area in Pennsylvania, USA, lacking an adequate generalization of the
model for large-scale mapping through the use of a larger and richer training data set: a
topic which remained open for further investigations.

Building on that experience, in this paper we rely on a U-Net architecture and we
develop a specific supervised training strategy for large-scale forest mapping over tropical
areas exploiting the full TanDEM-X data set. To achieve this purpose, we have extended the
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input features to be considered by the U-Net, accounting for the large variety of acquisition
geometries of the TanDEM-X system, characterized by different interferometric baselines
and incidence angles, which lead to significant variations in both SAR backscatter and
interferometric quantities. A map of the Amazon rainforest based on Landsat [7] has
been used as a reference map for properly training the U-Net. Moreover, we considered a
separated set of images to train the U-Net for water detection as well, in order to mask out
water surfaces which typically appear completely decorrelated in the bistatic coherence.
With the combination of both classification outputs, we were able to generate large-scale
maps over Amazonas with three classes: forest, non-forest and water. We then extended
the network inference over tropical forests in Africa as well as in Indonesia, with the aim
to assess the classification performance over different kinds of tropical forests and terrain
characteristics. Moreover, as for the case of the TanDEM-X FNF map [12], in order to limit
the computational load and significantly reduce the overall data volume, memory usage
and processing time, we utilized as input TanDEM-X quicklook images with a spatial
resolution of 50 m.

This paper is organized as follows: Section 2 provides a brief summary of the TanDEM-
X mission as well as the most relevant quantities derived from such a bistatic InSAR system.
The background concepts necessary for understanding the work and the utilized reference
data sets are presented in Section 2. Section 3 gives an overview of the baseline algorithms,
while Section 4 details the U-Net architecture, the developed training strategy and the
performance metrics adopted for the accuracy assessment. The classification results on
single TanDEM-X images as well as on large-scale areas are presented in Section 5, together
with an intercomparison with other large-scale forest maps available in the literature. The
discussion on the achieved performance is detailed in Section 6 and final conclusions and
remarks are drawn in Section 7.

2. Background Concepts and Data Sets
2.1. The TanDEM-X Interferometric Data Set and Its Properties

TanDEM-X is the first operational bistatic spaceborne SAR system comprising two
spacecrafts, TerraSAR-X (TSX) and TanDEM-X (TDX), which act as a large single-pass
radar interferometer with variable acquisition geometries [13]. Since the beginning of the
mission in 2010, more than half a million high-resolution interferometric scenes have been
acquired and processed for the generation of the global TanDEM-X digital elevation model
(DEM), covering at least twice the complete Earth’s landmasses [14,15]. A single bistatic
stripmap scene typically extends over an area of about 30 km in range by 50 km in azimuth,
with a resolution of 12 m × 12 m for interferometric products. From this, the quicklook
images of several SAR and InSAR quantities, such as backscatter and coherence maps,
are generated as by-products at a ground resolution of 50 m × 50 m by applying a spatial
multi-looking process. The global TanDEM-X quicklook data set has been exploited during
the whole mission for performance monitoring activities as well as for the planning and
optimization of new acquisitions [27]. Moreover, the limited computational load and the
significant reduction in data volume, memory usage and processing time offered by the
TanDEM-X quicklook data set allow for its fast exploitation with the aim of generating
global geo-products, such as the TanDEM-X FNF map [12] and the TanDEM-X water body
layer (WBL) [28].

The quality of the acquired TanDEM-X bistatic interferograms can be assessed by
means of the interferometric coherence γTot , which is defined as the normalized cross-
correlation coefficient between the interferometric image pair [29,30]:

γTot =
|E[u1 · u∗2 ]|√

E[|u1|2] · E[|u2|2]
, (1)

where E[·] represents the statistical expectation, ∗ the complex conjugate operator and | · |
the absolute value. u1 and u2 identify the master and slave images, respectively. γTot varies
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between 0 and 1 and it is typically estimated from real SAR data by applying a sliding
boxcar window of W pixels centred around the considered pixel [31].

The total coherence can be factorized as presented in [32] and extended in [13],
leading to:

γTot = γAmb · γRg · γAz · γTemp · γQuant · γSNR · γVol, (2)

where the terms on the right-hand side are called decorrelation factors and account for
different error contributions: SAR ambiguities (γAmb), coregistration errors in range and
baseline decorrelation (γRg), misregistration in azimuth and relative shift of the Doppler
spectra (γAz), temporal decorrelation (γTemp), quantization (γQuant), thermal noise (γSNR)
and volume decorrelation (γVol). The first three terms (γAmb, γRg and γAz) are related to the
specific sensor parameters and acquisition geometry [33], while γTemp, γQuant, γSNR and
γVol show a dependency on the specific illuminated scene on the ground and, consequently,
on the kind of on-going backscattering mechanism. Given the bistatic nature of TanDEM-X,
the coherence is not affected by temporal decorrelation, so γTemp = 1. Differently, volume
decorrelation (γVol) occurs when volumetric targets, such as vegetated areas or snow-
covered regions, are illuminated and recorded by two slightly different positions, as in the
case of single-pass across-track interferometry. γVol can be derived by inverting (2) and
compensating for all other decorrelation factors, as presented in [18].

In addition to the target’s properties, the volume decorrelation factor is closely re-
lated to the acquisition geometry [17]. Specifically, it is linked to the height of ambiguity,
hAmb, which represents the topographic height difference of a complete 2π cycle of the
interferometric phase [17]. For the bistatic case, hAmb is defined as:

hAmb =
λ · R · sin(θi)

B⊥
, (3)

where λ is the radar wavelength, R the slant range, θi the acquisition incidence angle
and B⊥ the normal baseline (perpendicular to the line of sight). Moreover, it has been
demonstrated that the decorrelation generated by volume scattering in densely vegetated
areas can be related to vegetation parameters such as tree height and extinction rate [17].

The strong impact of the acquisition geometry on the volume decorrelation factor
(and consequently on the total interferometric coherence) needs to be carefully taken into
account when utilizing such a quantity as an input feature for the detection of forested
areas from TanDEM-X InSAR data, which are acquired with a large variety of imaging
geometries. In this context, the height of ambiguity represents one of the key parameters
for the design of an effective training strategy for the proposed CNN.

Figure 1 depicts the height of ambiguity for TanDEM-X data-takes acquired over
the Amazon rainforest from the end of 2010 to the end of 2016. The values span from
a few meters to 200 m. The continuous variability of the physical baseline between the
TerraSAR-X and TanDEM-X satellites is made possible by the adjustable, unique Helix close
orbit formation [14]. Most values of hAmb are comprised between 40 m and 60 m during
the first TanDEM-X global coverage for the generation of the TanDEM-X digital elevation
model (DEM) [15], from the end of 2010 to March 2012. The second TanDEM-X global
coverage, from April 2012 to March 2013, was acquired with a lower hAmb set around 35 m,
aiming at improving the final DEM performance after a proper mosaicking of both global
coverages [13,34]. During 2013 and 2014, further data-takes over the Amazon rainforest
were acquired, but with typical hAmb values higher than 80 m to limit the amount of
volume decorrelation over vegetated areas. Very few acquisitions were acquired during
the TanDEM-X science phase in 2014–2015 [34] and they were characterized by extremely
low heights of ambiguity, which made the data extremely noisy. By the end of 2015 and
during 2016, several images were acquired with different acquisition geometries and within
a range of heights of ambiguity spanning between 20 m and 120 m.

Different considerations have to be formulated regarding the behaviour of water
surfaces and their similarities with forests in InSAR data. Here, an almost completely
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specular reflection of the radar wave happens in presence of calm water, which leads to
recorded backscatter values close to the system noise floor and to a complete decorrelation
of the interferometric signal. Differently, in the presence of strong winds, surface waves
typically increase the surface roughness of water as well, causing a significantly higher
backscattered signal, while the InSAR coherence normally remains close to the lower bias
(some low-level InSAR coherence has been measured in the presence of long waves, which
typically do not concern inland rivers). Therefore, the use of the InSAR coherence in
addition to backscatter for water detection increases the robustness of the classification, by
reducing possible misclassifications caused by higher backscatter values in the presence of
wind. Finally, by considering bistatic interferometry, it is quite unlikely that forests will
completely decorrelate (reaching the lower bias) even for small heights of ambiguity. This
aspect is crucial for a correct discrimination between forest and water classes.
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Figure 1. Height of ambiguity values for TanDEM-X acquisitions over the Amazon rainforest from
the beginning of the operational mission at the end of 2010 to the end of 2016.

2.2. External Reference Data

The complete set of external reference maps, used for the supervised training of the
proposed U-Net as well as for the intercomparison between large-scale forest maps, is
listed below:

• Landsat Tree Cover Map ([7,35]): This map is based on Landsat data acquired from 2000
to 2015. It is provided at a resolution of 30 m × 30 m and represents the percentage of
forest covering the area defined by a 30 m pixel. Forest is defined as woody vegetation
higher than 5 m. The tree cover map of 2010 has been used for training the U-Net on
forest mapping.

• FROM-GLC Map ([8]): The FROM-GLC map has been used for the large-scale inter-
comparison of the generated mosaics. This land cover map has been generated at a
pixel spacing of 10 m using a machine learning random forests classifier, trained on
Landsat data acquired up to 2015, which has been updated to 2017 using additional
multi-spectral data from the ESA Sentinel-2 mission.

• Palsar FNF Map ([10]): The PALSAR forest/non-forest map has been used for large-
scale maps intercomparison. It is based on data acquired at the L band by the Japanese
ALOS satellite series. The global PALSAR FNF map has been produced by threshold-
ing the detected backscatter images acquired in cross polarization (HV channel) and it
is provided with a 25 m pixel spacing. This map is available for 2010 and it is yearly
updated starting from 2015.

• Sentinel-2 and Landsat Data: For validation purposes, we also utilized some specific
multi-spectral Sentinel-2 and Landsat acquisitions over the Amazon rainforest.

Finally, it is worth pointing out that, before usage, all used external reference data were
interpolated to the corresponding pixel size and output grid of the considered TanDEM-X
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input products (i.e., at a pixel spacing of 50 m), which were sampled on a uniform grid in
latitude/longitude, referred to as the WGS84 Ellipsoid.

3. Baseline Classification Approaches

In this section, we briefly recall the baseline approaches already published in the
literature for global forest and water mapping with TanDEM-X bistatic data that will be
used as state-of-the-art algorithms for performance comparison with respect to the newly
proposed CNN model.

3.1. Global Forest Mapping with TanDEM-X

Based on the findings of the work presented in [17], the volume decorrelation factor
γVol was selected as the main input feature for the generation of the TanDEM-X forest/non-
forest (FNF) map. The developed algorithm was based on a geometry-dependent fuzzy
clustering classification approach [12], where the cluster centroids of both forest and non-
forest partitions were defined a priori by first dividing the complete span of available
heights of ambiguity into a set of sub-intervals. Then, for each sub-interval, the γVol mean
value was evaluated for each class distribution, considering a dedicated training set of
TanDEM-X images and a Landsat-based external reference for the correct grouping of
both classes. It is worth mentioning that only acquisitions with hAmb < 100 m were
considered for the generation of the global TanDEM-X FNF map. On images acquired with
higher hAmb values, the forest classification was not performing well due to the acquisition
geometry, characterized by smaller perpendicular baselines between the master and slave
satellites, which reduce the sensitivity of γVol to vegetated areas. Afterwards, the procedure
was repeated for three different ranges of incidence angles, namely characterizing the
near, mid and far ranges of the operational TanDEM-X single-polarization (HH) stripmap
beams constellation.

Given the variability of the interferometric coherence at the X band when considering
different types of forest (mainly caused by changes in forest structure, density and tree
height), three different sets of cluster centroids were derived for the generation of the global
product, depending on the specific type of forest: tropical, temperate and boreal forests.
Specifically, the Landsat reference data sets for the generation of the cluster centroids were
located over the Amazonas, central Europe and Sweden, respectively. At the inference
stage, a different set of centroids, selected depending on the acquisition latitudes, was
utilized for classifying the input TanDEM-X images through the fuzzy clustering algorithm.
Finally, the classified images were mosaicked in a single forest map following a weighted
mosaicking process, which was necessary to achieve satisfactory accuracy for the output
product [12].

For the generation of the global FNF map product, the entire data set of TanDEM-X
acquisitions up to 2015 was considered. In particular, a quicklook version of the full-
resolution images at 50 m × 50 m independent pixel spacing was used. Such images were
obtained by the spatial multi-looking of the full-resolution TanDEM-X products at 12 m.

3.2. Global Watershed-Based Water Mapping with TanDEM-X

The coherence is a reliable indicator of the presence of water on the ground, since water
surfaces typically appear as completely decorrelated areas. Therefore, for the generation
of the global TanDEM-X water body layer (WBL), the authors relied on the coherence as
the sole input feature for performing the classification and developed a detection method
based on the watershed segmentation algorithm [28]. To do so, a Scharr transformation was
firstly applied to the spatial gradient of the coherence in order to highlight its edges [36]
and, secondly, the watershed algorithm was applied to the edges’ image for performing the
actual segmentation [37]. Regions affected by geometric distortions, which typically lead to
a complete decorrelation and may cause the erroneous detection of water surfaces, were
filtered out by properly deriving shadow and layover maps from the acquisition geometry
and the underlying topography. Overlapping classified images were then mosaicked to-
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gether by computing a weighted average, where quality weights were assigned depending
on the reliability of the water detection. For the generation of the global product, the same
input data set used for the generation of the TanDEM-X FNF map was considered [28].

4. Methods
4.1. Proposed U-Net-like Architecture

By relying of the findings of the work presented in [23], we decided to keep the U-Net
paradigm for the extension of forest mapping with TanDEM-X to a larger data set. In
particular, the structure of the utilized U-Net-like architecture is presented in Figure 2. The
encoder branch, on the left-hand side of the network, was then followed by a decoder
one on the right-hand side, resulting in a U-like structure where each stage worked at a
different resolution and abstraction level. Each stage of the encoder path consisted of a
repeated application of two 3 × 3 convolution kernels, interleaved by rectified linear unit
(ReLU) activations, with a terminal 3 × 3 convolutional layer with max pooling for the
downsampling operation. Moreover, batch normalization was applied to speed up the
network training and mitigate its dependence on the initialization [38]. The decoder section
comprised mirrored stages with respect to the encoder one, which allowed for the progres-
sive restoration of the retrieved feature’s spatial resolution, simultaneously reducing its
number, by halving it at each 2 × 2 upscaling (performed through up-convolutions). The
upsampled features were concatenated with the corresponding scale features coming from
the encoding path through direct skip connections, which allowed for the direct propaga-
tion of high-resolution information from the encoder to the decoder. Such concatenated
feature blocks were then convolved twice using again ReLU activation functions, as for the
encoding path. The exit decoding stage comprised two additional convolutional layers.
The last layer was a 1 × 1 convolution, which compacted the output feature map. This
was followed by a sigmoid activation function, which finally provided the desired binary
classification map by applying a threshold at 0.5. The number of convolutional kernels at
each stage is reported in Figure 2, close to the corresponding operation symbol.

Figure 2. U-Net-like architecture utilized for TanDEM-X image classification. The numbers close to
the convolutional layers identify the number of kernels. All kernels have size 3 × 3 except from the
last layer which is a 1 × 1 convolution.

We fed the network using the following set of input feature maps: the SAR backscat-
ter (in the form of radar brightness β0), the interferometric coherence γTot, the volume
decorrelation factor γVol, the local incidence angle θi and the height of ambiguity hAmb. An
example of input feature patches is presented in Figure 3. The choice of this set of input
features was based on the conclusions derived from the work presented in [23], where
the impact of the different TanDEM-X features on forest detection using U-Net was firstly
investigated. With respect to the work in [23], hAmb was added, as the key descriptor
accounting for the variability of TanDEM-X acquisition geometries. As for the generation
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of the TanDEM-X FNF map, we decided to work with input features at 50 m resolution, in
order to limit the computational load.

Figure 3. Example of input features patches of 128 × 128 pixels (6.4 km × 6.4 km): (from left-to-
right) the interferometric coherence, the volume decorrelation factor, the height of ambiguity, the
backscatter, and the local incidence angle.

4.2. Generation of the Training Data Set

For training the U-Net architecture, we developed an ad hoc strategy aimed at gener-
alizing the model with respect to all possible acquisition geometries of the TanDEM-X data
set. In order to simplify the problem of generating well-balanced training data sets, we
selected two different sets of images over the Amazon rainforest, characterized by different
peculiarities, to train two separate U-Net-like architectures for forest and water mapping,
respectively. The resulting output binary layers were then combined in a final classification
map providing three classes: forest, non-forest and water.

Forest Mapping Task: We utilized as an external reference the Landsat Tree Cover map
recalled in Section 2.2: we set an empirical threshold at 50% on the tree cover density map
to generate a reference binary forest/non-forest map for training and validation purposes.
In order to account for the different acquisition geometries, we first divided the acquisition
incidence angles θi into three main ranges: (a) θi < 35◦, (b) θi ∈ [35◦, 45◦] and (c) θi > 45◦.
Similarly, we divided the overall span of hAmb, ranging from 20 m to about 120 m, into
sub-intervals of 2 m. Where possible, we utilized up to 5 images per interval (regarding
both hAmb and θi). The overall distribution of the input acquisitions with respect to hAmb
and θi is depicted in Figure 4. As it can be seen, hAmb ranges between 30 m and 120 m are
well sampled with all three incidence angles’ intervals, while mid- and far-range incidence
angles are not available at hAmb < 30 m. Nevertheless, it is worth pointing out that the
vast majority of operational TanDEM-X acquisitions were acquired with hAmb > 30 m.
Moreover, we selected only images with a forest content comprised between 30% and 70%,
in order to mitigate class imbalance. The number of pixels flagged as forest, with respect to
the total number of valid pixels in each image, was derived from the reference data. Overall,
we considered 455 input TanDEM-X acquisitions over the Amazon rainforest, from which
we extracted patches of size 128 × 128 pixels, resulting in more than one million patches.
All data-takes were acquired between 2011 and 2012, in order to assure the best possible
temporal agreement with the considered reference map of 2010.

Water Mapping Task: To train the U-Net-like CNN for water detection, we changed the
data set generation strategy, since the decorrelation on water surfaces is almost independent
of the acquisition geometry. In this case, the bottleneck is given by the lower amount of
available water samples, given the limited extension of water surfaces, with respect to
the surrounding land cover classes. For this purpose, we utilized a different set of 376
TanDEM-X images over the Amazon rainforest region, characterized by a mean water
content of at least 35% according to the reference data and representative of different types
of water bodies, such as open water, lakes and rivers.
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Figure 4. Overall distribution of the TanDEM-X input acquisitions used for training with respect to
the considered hAmb and θi intervals.

4.3. Training Process

The network was trained from scratch to avoid any type of transfer learning, taking
advantage of the increased amount of available data with respect to previous studies. We
optimized the network by employing the Adam algorithm [39], with the initial learning
rate set to 10−4. We used minibatches comprising 32 patches, randomly sampled from the
overall training validation data set (80% reserved for training and 20% for validation). As
a loss function, we utilized a combination of the cross-entropy loss, which showed nice
convergence properties, and the Jaccard similarity loss, which accounted for the spatial
distribution of neighbouring pixels belonging to the same class, as performed in [23].
Figure 5 depicts the loss function and the accuracy trends for the training and validation
sub-sets, considering 50 epochs. If, on the one hand, a good convergence between the
training and validation loss functions is observed, on the other hand, a slightly better
performance of the validation loss is visible during the first epochs. This behaviour is
probably due to the fact that, working with minibatches, the training loss is calculated
for each backpropagation step during an epoch, while the validation loss is calculated at
the end of each epoch only. Since each backpropagation step within a single epoch could
improve the model significantly, especially during the first few epochs when the network
weights are still relatively untrained, it is not uncommon to obtain a lower validation loss
which later on converges to the training one.

Figure 5. Loss function and accuracy for the training and validation sets, respectively, obtained
during the training phase of the TanDEM-X U-Net-like CNN for forest mapping.
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4.4. Performance Assessment Metrics

We assess the quality of the produced TanDEM-X classification maps by computing the
standard confusion matrices, with respect to external reference maps, and evaluating several
performance metrics. For each land cover class, the four terms in the confusion matrix were
defined as: true positives (TP)-pixels classified with the same land cover (forest/water)
in both maps; false positive (FP)-pixels wrongly assigned in the TanDEM-X classification
map to one of the two classes (forest/water) and belonging in the reference map to the
non-forest/non-water class; false negative (FN)-pixels classified in the TanDEM-X image as
non-forest/non-water and assigned to one of the land covers (forest/water) in the reference
map and true negative (TN)-pixels classified as non-forest/non-water in both maps.

For the final performance evaluation, we considered the overall accuracy (OA) and the
F-score, which can be derived from the confusion matrices and are defined as follows [40]:

• The overall accuracy (OA) represents the overall correctly classified pixels, with
respect to the total number of classified pixels, considering all land cover classes, and
is defined as:

OA =
TP + TN

TP + TN + FP + FN
(4)

• The F-score, also called the F1-score, is an accuracy metric that ranges between 0 and
1 and is expressed as:

F−score =
2× TP

2× TP + FP + FN
(5)

The F-score is mainly used to evaluate binary classifications and is useful especially
when dealing with imbalanced data sets. Moreover, in this work the F-score was evaluated
for each single land cover class, separately. On the other hand, the OA has the advantage
of being easily interpretable but the disadvantage that it is not very robust when the data
are unevenly distributed.

Moreover, we also validated our proposed approach by comparing the TanDEM-X
mosaic over the Amazon rainforest, generated using acquisitions performed in 2016, and
a forest/non-forest map derived from Sentinel-2 optical images acquired during the dry
season between June and August 2016. For the derivation of the Sentinel-2 FNF map,
we relied on the normalized difference vegetation index (NDVI) and the normalized
difference moisture index (NDMI) [41]. Both indexes are good indicators of the presence
of vegetation in Sentinel-2 images and are obtained from a combination of the Sentinel-2
spectral bands 4, 8 and 11 [42]. In order to properly derive a binary layer we applied
thresholds of 0.7 and 0.25 on the NDVI and NDMI, respectively, where the threshold values
were computed to optimally separate the distributions of forest and non-forest classes
within the corresponding bimodal histograms, shown later on in Figure 10.

5. Results
5.1. Single-Scene Classification

After training the U-Net-like CNN over the Amazon rainforest as presented in
Section 4.2, a further 976 TanDEM-X quicklook images with at least 10% forest content
over the Amazon rainforest and representative for all the considered ranges of hAmb values
and incidence angles were considered for testing its performance. Clearly, the test data set
was not used during the training phase.

Figure 6 shows two examples of single-scene classification by considering (top)
hAmb = 32 m and (bottom) hAmb = 99 m. From left to right, each row depicts the Landsat
reference map, together with the classification maps obtained by applying the baseline
clustering approach (CL-FNF map) and the proposed deep-learning-based approach (CNN-
FNF map), respectively. The detected forest is shown in green, the non-forested areas are
depicted in white and the water is represented in cyan. The CNN-based approach is more
robust to noise with respect to the baseline clustering and therefore able to correctly close
gaps over forested areas as well as to better detect clear cuts. Additionally, topographic
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effects are also mitigated due to the utilization of the local incidence angle as an input fea-
ture. The improvement in the classification accuracy obtained through the CNN is clearly
visible, in particular when considering high hAmb values, which are typically characterized
by limited volume decorrelation and, consequently, by higher classification uncertainty
between forest and non-forest pixels. This is confirmed when considering the F-score,
computed with respect to the Landsat reference image. Indeed, for the first image with
hAmb = 32 m, in the case of the CL-FNF map we obtained F-scores of 0.83 and 0.86 for the
non-forest and forest classes, respectively, while, when considering the CNN-FNF map,
the F-score achieved 0.96 for both classes (water surfaces were not present). Regarding the
second image, characterized by hAmb = 99 m, the F-scores of the CL-FNF map reached 0.5,
0.85 and 0.81 for the non-forest, forest and water classes, respectively, while the F-scores of
the CNN-FNF map increased by more than 10% for all three classes, achieving 0.88, 0.98
and 0.92, respectively.

Figure 6. Forest classification maps for two TanDEM-X images acquired over the Amazon rainforest.
The top row depicts an image acquired in April 2012 with hAmb = 32 m, while the bottom row shows
an image acquired in May 2013 with hAmb = 99 m. Each row refers to an acquisition, and the Landsat
forest map used as a reference is depicted (a,d), together with TanDEM-X forest maps obtained with
the baseline clustering approach (b,e) and the proposed CNN model (c,f). Water bodies are directly
detected in the TanDEM-X CNN images (c,f), while the TanDEM-X WBL [28] was applied as masking
layer to the forest maps generated with the clustering approach (b,e).

A more exhaustive performance comparison between the proposed approach and
the baseline CL approach is presented in Figure 7, where all test images are considered.
Figure 7a depicts the difference in F-score between the two methods. The parameter was
evaluated with respect to the forest class. An increase was F-score was obtained for the vast
majority of the images (positive values), indicating a significant performance improvement.
Indeed, the mean F-score, computed over all the available acquisitions, was equal to 0.88
for the CNN-FNF map, while it reduced to 0.75 for the CL-FNF map case. Moreover, the
effectiveness of the training strategy can be seen in Figure 7b, which depicts the performance
obtained by comparing the forest classification for both considered approaches as a function
of the percentage of forest in the image, according to the Landsat forest map used as a
reference. An improvement in the detection of forest with the CNN-FNF map is overall
observable but especially noticeable over densely forested areas (the percentage of forest
samples > 80%). Differently, Figure 7c shows the performance obtained by comparing the
forest classification as a function of the hAmb. To perform this last analysis, we considered a
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long time-series of TanDEM-X images acquired over the same area with varying acquisition
geometry. The improvement in the classification of forest with the CNN-FNF map is clearly
visible, especially for values of hAmb > 90 m, where the performance of the clustering
approach appears to be strongly degraded. According to that, with the proposed method,
single images acquired with higher hAmb can provide reliable detection of forested areas.

Figure 7. Performance comparison between forest classification maps obtained with the proposed
deep learning approach (CNN) and with the baseline clustering approach used for the generation of
the global TanDEM-X FNF map. (a) Difference in F-scores between the baseline clustering method
and the proposed deep-learning-based approach. (b) F-scores for the two methods as functions of
the forest density, estimated from Landsat reference data, and (c) F-scores for the two methods as
functions of the hAmb.

5.2. Large-Scale Mosaics

Overall, we classified more than 20,000 TanDEM-X images acquired over tropical
forests between the end of 2010 and the beginning of 2017 using the proposed methodology.
We considered acquisitions from three separate coverages of the whole area, spanning over
three different continents, which were designed during different phases of the TanDEM-X
mission. In particular, two almost complete coverages were performed during the first and
second years of operation (i.e., 2011 and 2012–2013, respectively), during which data for
the generation of the global TanDEM-X digital elevation model were acquired [15]. A third
partial coverage was performed later on in 2016 over the Amazon forest only [14]. The
reliable performance achieved for all different acquisition geometries over the Amazon rain-
forest allows for the generation of large-scale time-tagged mosaics, skipping the weighted
mosaicking process of overlapping acquisitions as performed for the generation of the
global TanDEM-X forest/non-forest map to achieve a sufficient accuracy [12]. Moreover,
the use of external reference maps to filter out water surfaces, as performed for the global
FNF product, is not necessary anymore with the proposed methodology.
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The U-Net-like CNN, trained over the Amazon rainforest only, was used both for clas-
sifying the entire Amazon basin and for extending the classification over the other tropical
areas in central Africa and South-East Asia as well. The aim of this last activity was to test
the generalization capability of the network and to investigate a potential performance
degradation, caused by changes in the characteristics of the illuminated forests.

Figure 8 shows the three large-scale mosaics, obtained from the different TanDEM-X
coverages for the three different macro-regions of interest. A detail of the classification map
over the Brazilian state of Rondônia, generated using input images acquired during the first
TanDEM-X global coverage only (2011), is presented in Figure 9. For visual comparison
purposes, an optical image acquired by Landsat over the same area is depicted as well.

Figure 8. Large-scale forest/non-forest mosaics over the tropical regions (Amazonas, Africa
and Indonesia) generated from the first, second and third coverages (where available) of the
TanDEM-X mission.
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Figure 9. (a) Detail of the TanDEM-X FNF map over the Brazilian state of Rondônia, generated using
input images acquired during the first TanDEM-X global coverage (2011). (b) Optical image from
Landsat acquired over the same area.

5.3. Local Validation with Sentinel-2 Data

In Figure 10, we show the Sentinel-2 NDVI and NDMI and the corresponding his-
tograms for a Sentinel-2 acquisition over the Amazon rainforest in the state of Rondônia.
As it can be seen from the histograms, both indexes show a bimodal behaviour, which
characterizes the presence of two main land cover classes: forest and non-forest. By thresh-
olding the NDVI at 0.7 and the NDMI at 0.25 and combining both outputs, we generated
a binary FNF map, which can be used for validation, as proposed in [43]. On the other
hand, for the detection of water surfaces, we relied on the WorldCover 2020 land cover
product [9].

Figure 10. Example of Sentinel-2 NDVI and NDMI indexes used for the generation of the forest/non-
forest validation maps. (a) NDVI, (b) NDMI and (c) corresponding histograms.
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A total of 96 TanDEM-X geocells, with at least 30% valid samples after clouds and
cloud-shadow removal on Sentinel-2 images, were considered for the validation. The
generated Sentinel-2 maps were re-projected and brought to the same coordinate reference
system, geographic extent and spatial resolution as the considered TanDEM-X FNF maps.
The complete performance accuracy obtained for the validation of the TanDEM-X mosaic
is detailed in Table 1. The overall accuracy (OA) was higher than 84%, and the F-score for
the forest class showed a high agreement for all considered geocells as well. In addition,
for the water class, a good performance was measured for geocells with a water content
higher than 5%. For geocells with a water content lower than 5%, generally characterized
by the presence of narrow rivers, the input resolution of the TanDEM-X quicklook products
seems not sufficient to properly detect such small water bodies. For the non-forest class, a
lower performance was obtained. Temporal changes, caused especially by deforestation
activities, accounted for an additional performance reduction. Indeed, the TanDEM-X FNF
mosaic was generated with images acquired during 2016 and the beginning of 2017, while
the Sentinel-2 FNF maps were obtained from images acquired during a limited period
of three months only (June–August 2016), when it was possible to acquire images with
a cloud cover percentage lower than 20%. In addition, the different sensitivities of the
TanDEM-X and Sentinel-2 sensors to vegetation close to rivers slightly impacted the overall
performance of the non-forest class.

Table 1. Performance comparison between TanDEM-X mosaic over the Amazonas rainforest of
2016 and Sentinel-2 (S2). The OA is presented for each mosaic. The number of evaluated geocells is
specified in brackets. The F-score is shown for the three land cover classes: non-forest, water and
forest. For each case, only geocells with a certain amount of samples belonging to each land cover
class (>1%, >5% and >10%) have been considered. The overall amount of pixels belonging to each
class has been estimated from the external map used in the comparison.

F-Score
2016 Samples OA Non-Forest Water Forest

S. America >1%
84.40 (96)

66.87 (93) 74.30 (47) 84.29 (95)
>5% 71.03 (83) 85.09 (24) 85.08 (94)
>10% 73.33 (75) 87.80 (15) 86.43 (92)

Finally, for visual inspection purposes, Figure 11 shows an example of the TanDEM-X
and Sentinel-2 FNF maps for the geocell previously considered in Figure 10, and a good
agreement between both maps can be appreciated.

Figure 11. Validation maps obtained for geocell S10W063 over the state of Rondônia, Brazil:
(a) Sentinel-2 and (b) TanDEM-X FNF maps from 2016.

5.4. Intercomparison with Global Products

For the generated TanDEM-X large-scale mosaics, we performed an intercomparison
with similar available products, generated from remotely sensed spaceborne data. All
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utilized external land cover reference data sets were interpolated to the same grid and
spatial resolution as those of the considered TanDEM-X classification maps. Since different
time-tagged mosaics over the tropical areas have been produced with TanDEM-X data, we
utilized external reference maps, where available, whose input data were approximately
acquired during similar time-spans as the TanDEM-X data, in order to reduce inconsisten-
cies caused by possible temporal changes between the two maps. To do so, we compared
the TanDEM-X mosaics with data mainly acquired during 2011 and the beginning of 2012
with the PALSAR forest/non-forest map of 2010 [10] and the TanDEM-X mosaics with
data acquired in 2012 and during the whole of 2013 with two maps referred to in 2015:
the PALSAR forest/non-forest map of 2015 and the FROM-GLC [44]. Finally, the mosaic
over the Amazonas generated from TanDEM-X acquisitions between 2016 and 2017 was
compared with two additional maps: the PALSAR forest/non-forest map of 2017 and the
FROM-GLC (updated to 2017 with Sentinel-2 data) [8].

The complete performance accuracy of all the TanDEM-X mosaics is detailed in
Tables 2 and 3. The overall accuracy (OA) was in all cases higher than 85%, and reaching
90% in some specific cases. In general, for the forest class a high agreement well over
80% is observed over all different tropical forest areas, pointing out the potential of the
proposed method for forest mapping and land cover classification with TanDEM-X data.
Major differences are observed between the PALSAR FNF maps and the TanDEM-X ones
over South-East Asia, with a decrease in the overall performance. This is probably due
to the strong topography which characterizes the area and affects the recorded SAR and
InSAR features as well as to the dynamic changes caused by deforestation and land use.
In addition, in central Africa a slightly different sensibility to vegetation between radar
and optical sensors (TanDEM-X vs. FROM-GLC maps) reduces the overall performance
of the forest class. With respect to the water class, the U-Net is able to detect water bod-
ies with high precision, especially along coastal areas, as observed over South-East Asia,
where an agreement between maps >95% is obtained. Over the other tropical areas, and
especially over the Amazon rainforest, where many geocells have a water content <5%,
the TanDEM-X water detection suffers from the not-sufficient resolution of the used input
TanDEM-X quicklook images (50 m) for the detection of narrow rivers, generally reducing
the performance of the generated maps.

Detailed examples of the intercomparison between the considered maps are presented
in Figure 12. An optical image (acquired with Landsat and taken from Google Earth ©)
is attached in each case for visual comparison purposes. Each area corresponds to a
geocell extending by 1◦×1◦ degrees in latitude/longitude. The comparison between
TanDEM-X 2011 and PALSAR 2010 maps is made on a geocell over Central Africa on the
northern border of the dense forest. Good agreement is observed for the forest (F-score of
0.95) and water (F-score of 0.84) classes. Major differences are observed for the non-forest
class (F-score of 0.77). Here, deforestation (changes in time) and different sensitivities
between the X and L band radar sensors to the forest close to the rivers accounts for a
slightly lower performance for this land cover class. In the case of the geocell over South-
East Asia, the coastal area is well caught by both compared maps: TanDEM-X 2013 and
PALSAR 2015 (F-score of 0.99 for the water class). The forest (F-score of 0.84) and non-
forest (F-score of 0.77) areas show a good agreement, too. Similarly, for the geocell over
the Amazon rainforest, a good agreement for all classes is observed as well (F-score of 0.91
for forest, of 0.70 for water and of 0.78 for non-forest). The TanDEM-X CNN-FNF map is
compared with the FROM-GLC one. The higher resolution of this last map accounts for
the major differences: clear-cuts are mapped at a higher level of detail, being able to catch
isolated trees. Differences in the status of the deforestation activities are observed, mainly
caused by the time difference in the acquisition of the data.

In general, it is necessary to point out that the utilized reference maps are not error-
free, which can of course further affect the resulting agreement. For example, the FROM-
GLC map is based on optical data only. This represents a strong limitation, since we are
considering regions mostly covered by clouds for a large part of the year, which lead to
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invalid or unreliable values. Moreover, when comparing maps acquired with different
sensors, at different resolutions, and especially at different temporal intervals, a certain
grade of disagreement can be expected, with forests, as well as water bodies, being a very
dynamic ecosystem, typically characterized by frequent changes in time.

Table 2. Performance comparison between TanDEM-X mosaics and PALSAR. For an explanation of
each field, please refer to the caption of Table 1.

F-Score
2011 Samples OA Non-Forest Water Forest

S. America >1%
89.72 (586)

68.45 (432) 63.70 (230) 86.25 (582)
>5% 77.06 (318) 76.87 (64) 87.05 (576)
>10% 78.93 (281) 82.83 (31) 87.96 (567)

Africa >1%
85.81 (302)

61.78 (234) 88.77 (66) 82.48 (301)
>5% 71.11 (172) 95.99 (33) 82.70 (300)
>10% 74.39 (148) 97.11 (26) 83.49 (296)

Asia >1%
86.20 (638)

64.35 (516) 97.30 (583) 71.30 (500)
>5% 66.73 (392) 98.41 (554) 77.47 (411)
>10% 69.00 (311) 98.69 (537) 79.02 (358)

2013 Samples OA Non-Forest Water Forest

S. America >1%
89.79 (589)

66.11 (467) 59.04 (251) 85.96 (580)
>5% 76.03 (345) 55.49 (84) 88.04 (563)
>10% 80.01 (288) 54.41 (44) 89.21 (551)

Africa >1%
86.06 (301)

60.90 (221) 78.46 (88) 83.61 (301)
>5% 71.49 (158) 90.34 (38) 83.62 (300)
>10% 74.84 (133) 97.90 (29) 84.00 (297)

Asia >1%
88.38 (630)

65.72 (515) 97.86 (576) 75.68 (511)
>5% 68.91 (382) 98.93 (546) 80.09 (426)
>10% 71.30 (293) 99.04 (531) 82.52 (370)

2016 Samples OA Non-Forest Water Forest

S. America >1%
88.06 (296)

70.52 (258) 70.49 (92) 86.98 (290)
>5% 76.18 (211) 79.57 (47) 87.25 (289)
>10% 79.31 (180) 85.53 (25) 87.47 (288)

Table 3. Performance comparison between TanDEM-X mosaics and FROM-GLC. For an explanation
of each field, please refer to the caption of Table 1.

F-Score
2013 Samples OA Non-Forest Water Forest

S. America >1%
90.61 (589)

67.63 (462) 74.17 (222) 86.60 (583)
>5% 78.79 (332) 85.70 (60) 87.28 (577)
>10% 81.27 (280) 88.04 (32) 88.50 (564)

Africa >1%
85.56 (303)

62.86 (263) 86.31 (84) 78.98 (300)
>5% 71.73 (206) 96.54 (36) 79.78 (295)
>10% 74.34 (183) 98.64 (29) 81.03 (287)

Asia >1%
90.41 (634)

66.16 (425) 95.68 (609) 81.05 (545)
>5% 72.58 (284) 98.19 (567) 83.35 (469)
>10% 73.63 (214) 98.81 (545) 84.66 (418)

2016 Samples OA Non-Forest Water Forest

S. America >1%
87.58 (296)

69.88 (255) 61.34 (111) 87.11 (290)
>5% 75.64 (206) 66.36 (56) 87.38 (289)
>10% 77.77 (178) 78.77 (28) 87.59 (288)
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Figure 12. Large-scale mosaics intercomparison for different geocells. Top: Geocell N03E018 in
Central Africa: (a) Google Earth ©, (b) TanDEM-X 2011 and (c) PALSAR 2010. Middle: Geocell
S09E118 in South-East Asia: (d) Google Earth ©, (e) TanDEM-X 2013 and (f) PALSAR 2015. Bottom:
Geocell N00W052 in Amazonas: (g) Google Earth ©, (h) TanDEM-X 2016 and (i) FROM-GLC 2017.

6. Potential for Change Detection and Deforestation Monitoring

The large-scale CNN-FNF maps produced from the different TanDEM-X coverages
can be exploited for detecting changes and monitoring dynamic phenomena such as
deforestation activities. Due to the high accuracy of the products, a reliable change detection
can already be performed by simply differentiating consecutive maps. An example is
presented in Figure 13, where an extended region in the Brazilian state of Rondônia is
considered. Red areas correspond to deforested regions where trees were cut down between
2013 and 2016 (50,700 ha). Deforestation patterns are clearly visible, and single clear-cuts
can be properly identified and associated with a specific time span.

In order to provide a more detailed example of the accuracy of the generated product,
we concentrate on the small patch highlighted by the yellow square, which is separately
analysed in Figure 14. Here, three Landsat optical images of the region, acquired at the
end of 2013, 2015 and 2016, respectively, are depicted together with the corresponding
change map derived by differentiating the TanDEM-X CNN-FNF maps of 2013 and 2016.
For each single year, the yellow squares superimposed to the optical images identify new
clear-cuts. As it can be seen, all main detected clear-cuts (from A to H) are correctly detected
in the CNN-FNF map as well (deforested 1100 ha). Only the clear-cut I is not detected,
which is probably due to the fact that vegetation was cut down after the acquisition of the
TanDEM-X image (the Landsat image in (c) is from December 2016).
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Figure 13. Example of deforestation monitoring in the state of Rondônia, Brazil, between 2013
and 2016. The change map was obtained by differentiating the CNN-FNF maps generated from
the TanDEM-X coverages of 2012–2013 and 2016, respectively. The patch highlighted in yellow is
investigated in detail in Figure 14.

Figure 14. Visual inspection for the validation of the detected clear-cuts from the yellow patch high-
lighted in Figure 13. (a–c) depict optical Landsat images of the region acquired at the end of 2013,
2015 and 2016, respectively. For each year, the yellow squares identify new clear-cuts. (d) shows the
corresponding change map derived by differentiating the TanDEM-X CNN-FNF maps of 2013 and 2016.

Clearly, the 50 m resolution of the considered TanDEM-X quicklook data limits the
possibility to properly detect very small changes, such as single trees or narrow roads. This
aspect will be considered in future works, by optimizing the proposed DL model for the
original TanDEM-X coregistered L1B products at full resolution. A first hint on the potential
of such an approach for high-resolution forest mapping can be seen in Figure 15. Here,
we can perform a visual inspection of a small area located in the Brazilian Amazon forest,
mapped at high resolution by different sensors. Figure 15a depicts the RGB optical image
acquired by Landsat on 6 June 2018, Figure 15b shows the corresponding land cover map at
10 m resolution from the ESA WorldCover 2020 product [9] (which represents the land cover
from 1 January to 31 December 2020 and is derived from Sentinel-1 and Sentinel-2 data),
while Figure 15c,d correspond to TanDEM-X FNF maps at 12 m resolution obtained from a
bistatic acquisition acquired on 28 May 2020, by applying the baseline clustering approach
(c) and the proposed CNN (d), respectively. It is important to remark that both TanDEM-X
approaches have not been specifically adapted to the high-resolution case, but simply
applied as performed for the 50 m quicklook images. One can notice how the deforestation
patterns are clearly recognizable in both TanDEM-X cases, even though the clustering
approach provides a much noisier detection of clear-cuts. The CNN is already able to better
resolve small gaps and to provide a more robust estimation. This behaviour was already
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observed at 50 m resolution. On the other hand, some small gaps appear in the detection
of closed forest areas (e.g., in the top-right corner of image (d)), probably due to slightly
different spatial patterns at high resolution that the network has not seen during training.
Regarding this aspect, a fine tuning of the proposed U-Net with sample high-resolution data
needs to be further investigated. Finally, some discrepancies between the ESA WorldCover
2020 and the TanDEM-X maps are highlighted by the red squares in Figure 15. Since all
the input images utilized for the generation of the WorldCover 2020 and of the TanDEM-X
FNF maps were acquired after the considered Landsat reference image, it appears that the
WorldCover 2020 product tends to slightly overestimate forests with respect to TanDEM-X,
suggesting different sensitivities of Sentinel-1/Sentinel-2 and TanDEM-X to the presence
of vegetation. In addition, this aspect could be further investigated after fine-tuning the
proposed CNN for high-resolution data.

Figure 15. Example of high-resolution forest mapping with TanDEM-X at 12 m resolution.
(a)—Landsat image acquired on 6 June 2018 (centre scene coordinates (lat,lon): (3◦53′42′′S,
54◦45′05′′W). (b)—Corresponding land cover map at 10 m resolution from the WorldCover 2020
product [9]. (c,d)—TanDEM-X FNF maps at 12 m resolution obtained from an acquisition acquired
on 28 May 2020, by applying the baseline clustering approach (c) and the proposed CNN (d). Red
squares highlight some discrepancies among the different maps.

7. Conclusions

In this paper, we presented an approach based on the use of deep convolutional neural
networks for mapping forests and water surfaces at large-scale by utilizing TanDEM-X
bistatic InSAR acquisitions. Starting from previously published research, we extended the
model’s generalization capabilities by considering new input features, such as the height
of ambiguity, and we developed an ad hoc training strategy for the network which takes
into account the variability of TanDEM-X acquisitions at global scale with respect to the
acquisition geometry. Due to this strategy, the proposed U-Net-based model is suitable
for large-scale processing and more robust with respect to state-of-the-art approaches.
Overall, the results over tropical forests show a good agreement with external reference
maps and a significant accuracy improvement with respect to the baseline approach, based
on a supervised clustering and previously used forest mapping with TanDEM-X data at
global scale. Moreover, due to the unique ability of radar sensors to acquire data also in
the presence of clouds, we are able to generate highly accurate, time-tagged and gap-free
products. This could provide the scientific community with valuable data for assessing
dynamic changes over forested regions, such as tropical or boreal forests, which are hidden
by clouds for most of the year.

The trained CNN has been used to classify TanDEM-X images acquired over different
tropical areas, spanning from the Amazon and African rainforests to South-East Asia. The
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improved classification accuracy allowed for the generation of time-tagged, large-scale
mosaics, each of those referring to a specific phase of the TanDEM-X mission. This opens
up new possibilities for effectively monitoring changes and deforestation phenomena in
the considered areas. As a further investigation topic, we could rely on the training strategy
presented in this work for re-training or fine-tuning the proposed model for high-resolution
TanDEM-X data and different types of forests, such as temperate or boreal forests, with the
aim to effectively detect selective logging patterns and forest degradation phenomena.

Author Contributions: Conceptualization, J.-L.B.-B., D.C., C.G., M.M. and P.R.; methodology, J.-L.B.-B.,
D.C. and P.R.; software, J.-L.B.-B., D.C., C.G. and P.P.; validation, J.-L.B.-B., D.C. and C.G.; formal
analysis, J.-L.B.-B. and D.C.; investigation, J.-L.B.-B. and P.R.; resources, J.-L.B.-B., P.P. and P.R.; data
curation, J.-L.B.-B., D.C. and C.G.; writing—original draft preparation, J.-L.B.-B. and P.R.; writing—
review and editing, J.-L.B.-B., D.C., C.G., M.M. and P.R.; visualization, J.-L.B.-B. and P.R.; supervision,
M.M. and P.R.; project administration, P.R.; funding acquisition, P.R. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: TanDEM-X data for scientific use available under https://tandemx-
science.dlr.de/.

Acknowledgments: The authors would like to thank the anonymous reviewers for the help improv-
ing the final quality of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Silva-Junior, C.; Moreira Pessôa, A.C.; Carvalho, N.; dos Reis, J.A.; Anderson, L.; Aragão, L. The Brazilian Amazon deforestation

rate in 2020 is the greatest of the decade. Nat. Ecol. Evol. 2021, 5, 144–145. [CrossRef]
2. Gao, Y.; Skutsch, M.; Paneque-Gálvez, J.; Ghilardi, A. Remote sensing of forest degradation: A review. Environ. Res. Lett. 2020,

15, 103001. [CrossRef]
3. Reiche, J.; Mullissa, A.; Slagter, B.; Gou, Y.; Tsendbazar, N.E.; Odongo-Braun, C.; Vollrath, A.; Weisse, M.J.; Stolle, F.; Pickens, A.;

et al. Forest disturbance alerts for the Congo Basin using Sentinel-1. Environ. Res. Lett. 2021, 16, 024005. [CrossRef]
4. Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a

classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [CrossRef]
5. Rast, M.; Bezy, J.L.; Bruzzi, S. The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its

mission. Int. J. Remote Sens. 1999, 20, 1681–1702. [CrossRef]
6. Pagano, T.; Durham, R. Moderate Resolution Imaging Spectroradiometer (MODIS). Proc. SPIE 1993. [CrossRef]
7. Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehamn, S.V.; Goetz, S.J.;

Loveland, T.R.; et al. High-resolution global maps of 21st century forest coverage change. Science 2013, 342, 850–853. [CrossRef]
8. Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited

sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci.
Bull. 2019, 64, 370–373. [CrossRef]

9. Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini,
A.; Vergnaud, S.; et al. ESA WorldCover 10 m 2020 v100. 2021. Available online: https://zenodo.org/record/5571936#
.YvtTBTURVPY (accessed on 22 June 2022). [CrossRef]

10. Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from
ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [CrossRef]

11. Schlund, M.; von Poncet, F.; Hoekman, D.; Kuntz, S.; Schmullius, C. Importance of bistatic SAR features from TanDEM-X for
forest mapping and monitoring. Remote Sens. Environ. 2014, 151, 16–26. [CrossRef]

12. Martone, M.; Rizzoli, P.; Wecklich, C.; Gonzalez, C.; Bueso-Bello, J.L.; Valdo, P.; Schulze, D.; Zink, M.; Krieger, G.; Moreira, A. The
Global Forest/Non-Forest Map from TanDEM-X Interferometric SAR Data. Remote Sens. Environ. 2018, 205, 352–373. [CrossRef]

13. Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A satellite formation for
high-resolution SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [CrossRef]

14. Zink, M.; Moreira, A.; Hajnsek, I.; Rizzoli, P.; Bachmann, M.; Kahle, R.; Fritz, T.; Huber, M.; Krieger, G.; Lachaise, M.; et al.
TanDEM-X: 10 Years of Formation Flying Bistatic SAR Interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021,
14, 3546–3565. [CrossRef]

15. Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Bräutigam, B.; Borla Tridon, D.; Bachmann, M.; Schulze, D.; Fritz, T.; Huber,
M.; et al. Generation and Performance Assessment of the Global TanDEM-X Digital Elevation Model. ISPRS J. Photogramm.
Remote Sens. 2017, 132, 119–139. [CrossRef]

https://tandemx-science.dlr.de/
https://tandemx-science.dlr.de/
http://doi.org/10.1038/s41559-020-01368-x
http://dx.doi.org/10.1088/1748-9326/abaad7
http://dx.doi.org/10.1088/1748-9326/abd0a8
http://dx.doi.org/10.1080/014311600210209
http://dx.doi.org/10.1080/014311699212416
http://dx.doi.org/10.1117/12.152835
http://dx.doi.org/10.1126/science.1244693
http://dx.doi.org/10.1016/j.scib.2019.03.002
https://zenodo.org/record/5571936#.YvtTBTURVPY
https://zenodo.org/record/5571936#.YvtTBTURVPY
http://dx.doi.org/10.5281/zenodo.5571936
http://dx.doi.org/10.1016/j.rse.2014.04.014
http://dx.doi.org/10.1016/j.rse.2013.08.024
http://dx.doi.org/10.1016/j.rse.2017.12.002
http://dx.doi.org/10.1109/TGRS.2007.900693
http://dx.doi.org/10.1109/JSTARS.2021.3062286
http://dx.doi.org/10.1016/j.isprsjprs.2017.08.008


Remote Sens. 2022, 14, 3981 22 of 22

16. Gonzalez, C.; Rizzoli, P. Landcover-Dependent Assessment of the Relative Height Accuracy in TanDEM-X DEM Products. IEEE
Geosci. Remote Sens. Lett. 2018, 15, 1892–1896. [CrossRef]

17. Martone, M.; Rizzoli, P.; Krieger, G. Volume decorrelation effects in TanDEM-X interferometric SAR data. IEEE Geosci. Remote
Sens. Lett. 2016, 13, 1812–1816. [CrossRef]

18. Rizzoli, P.; Dell’Amore, L.; Bueso-Bello, J.; Gollin, N.; Carcereri, D.; Martone, M. On the derivation of volume decorrelation from
Tand-DEM-X bistatic coherence. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 3504–3518. [CrossRef]

19. Martone, M.; Sica, F.; Gonzalez, C.; Bueso-Bello, J.L.; Valdo, P.; Rizzoli, P. High-Resolution Forest Mapping from TanDEM-X
Interferometric Data Exploiting Nonlocal Filtering. Remote Sens. 2018, 10, 1477. [CrossRef]

20. Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.S.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive
Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [CrossRef]

21. Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A meta-analysis and review.
ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [CrossRef]

22. Zhu, X.; Montazeri, S.; Ali, M.; Hua, Y.; Wang, Y.; Mou, L.; Shi, Y.; Xu, F.; Bamler, R. Deep Learning Meets SAR: Concepts, Models,
Pitfalls, and Perspectives. IEEE Geosci. Remote Sens. Mag. 2021, 9, 143–172. [CrossRef]

23. Mazza, A.; Sica, F.; Rizzoli, P.; Scarpa, G. TanDEM-X Forest Mapping Using Convolutional Neural Networks. Remote Sens. 2019,
11, 2980. [CrossRef]

24. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

25. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

26. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab,
N., Hornegger, J., Wells, W., Frangi, A., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241.

27. Rizzoli, P.; Martone, M.; Bräutigam, B. Global Interferometric Coherence Maps From TanDEM-X Quicklook Data. IEEE Geosci.
Remote Sens. Lett. 2014, 11, 1861–1865. [CrossRef]

28. Bueso-Bello, J.; Martone, M.; González, C.; Sica, F.; Valdo, P.; Posovszky, P.; Pulella, A.; Rizzoli, P. The Global Water Body Layer
from TanDEM-X Interferometric SAR Data. Remote Sens. 2021, 13, 5069. [CrossRef]

29. Bamler, R.; Hartl, P. Synthetic aperture radar interferometry. Inverse Probl. 1998, 14, R1–R54.
30. Touzi, R.; Lopes, A.; Bruniquel, J.; Vachon, P.W. Coherence estimation for SAR imagery. IEEE Trans. Geosci. Remote Sens. 1999,

37, 135–149. [CrossRef]
31. Seymour, M.; Cumming, I. Maximum likelihood estimation for SAR interferometry. In Proceedings of the IEEE International

Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; pp. 2272–2275.
32. Zebker, H.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959.

[CrossRef]
33. Gatelli, F.; Guamieri, A.M.; Parizzi, F.; Pasquali, P.; Prati, C.; Rocca, F. The wavenumber shift in SAR interferometry. IEEE Trans.

Geosci. Remote Sens. 1994, 32. [CrossRef]
34. Bachmann, M.; Kraus, T.; Bojarski, A.; Schandri, M.; Böer, J.; Edmund Busche, T.; Bueso-Bello, J.L.; Grigorov, C.; Steinbrecher, U.;

Buckreuss, S.; et al. The TanDEM-X Mission Phases—Ten Years of Bistatic Acquisition and Formation Planning. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2021, 14, 3504–3518. [CrossRef]

35. Sexton, J.O.; Song, X.P.; Feng, M.; Noojipady, P.; Anand, A.; Huang, C.; Kim, D.H.; Collins, K.M.; Channan, S.; DiMiceli, C.; et al.
Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with
lidar-based estimates of error. Int. J. Digit. Earth 2013, 6, 427–448. [CrossRef]

36. Jähne, B.; Scharr, H.; Körkel, S.; Jähne, B.; Haußecker, H.; Geißler, P. Principles of Filter Design. In Handbook of Computer Vision and
Applications; Academic Press: Cambridge, MA, USA, 1999; Volume 2, pp. 125–151.

37. Beucher, S.; Lantuejoul, C. Use of Watersheds in Contour Detection. In Proceedings of the International Workshop on Image
Processing: Real-time Edge and Motion Detection/Estimation, Rennes, France, 17–21 September 1979.

38. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015,
arXiv:1502.03167.

39. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
40. Chicco, D.; Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary

classification evaluation. BMC Genom. 2020, 21, 1–13. [CrossRef] [PubMed]
41. Rees, G. The Remote Sensing Data Book; Cambridge University Press: Cambridge, UK, 1999.
42. D’Odorico, P.; Gonsamo, A.; Damm, A.; Schaepman, M.E. Experimental Evaluation of Sentinel-2 Spectral Response Functions for

NDVI Time-Series Continuity. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1336–1348. [CrossRef]
43. Pulella, A.; Santos, R.; Sica, F.; Posovszky, P.; Rizzoli, P. Multi-Temporal Sentinel-1 Backscatter and Coherence for Rainforest

Mapping. Remote Sens. 2020, 12, 847. [CrossRef]
44. Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation

and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 48.
[CrossRef]

http://dx.doi.org/10.1109/LGRS.2018.2864774
http://dx.doi.org/10.1109/LGRS.2016.2614103
http://dx.doi.org/10.1109/JSTARS.2022.3170076
http://dx.doi.org/10.3390/rs10091477
http://dx.doi.org/10.1109/MGRS.2017.2762307
http://dx.doi.org/10.1016/j.isprsjprs.2019.04.015
http://dx.doi.org/10.1109/MGRS.2020.3046356
http://dx.doi.org/10.3390/rs11242980
http://dx.doi.org/10.1109/LGRS.2014.2312135
http://dx.doi.org/10.3390/rs13245069
http://dx.doi.org/10.1109/36.739146
http://dx.doi.org/10.1109/36.175330
http://dx.doi.org/10.1109/36.298013
http://dx.doi.org/10.1109/JSTARS.2021.3065446
http://dx.doi.org/10.1080/17538947.2013.786146
http://dx.doi.org/10.1186/s12864-019-6413-7
http://www.ncbi.nlm.nih.gov/pubmed/31898477
http://dx.doi.org/10.1109/TGRS.2012.2235447
http://dx.doi.org/10.3390/rs12050847
http://dx.doi.org/10.1080/01431161.2012.748992

	Introduction
	Background Concepts and Data Sets
	The TanDEM-X Interferometric Data Set and Its Properties
	External Reference Data

	Baseline Classification Approaches
	Global Forest Mapping with TanDEM-X
	Global Watershed-Based Water Mapping with TanDEM-X

	Methods
	Proposed U-Net-like Architecture
	Generation of the Training Data Set
	Training Process
	Performance Assessment Metrics

	Results
	Single-Scene Classification
	Large-Scale Mosaics
	Local Validation with Sentinel-2 Data
	Intercomparison with Global Products

	Potential for Change Detection and Deforestation Monitoring
	Conclusions
	References

