Diaconu, Codrut-Andrei and Saha, Sudipan and Gunnemann, Stephan and Zhu, Xiao Xiang (2022) Understanding the Role of Weather Data for Earth Surface Forecasting using a ConvLSTM-based Model. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022, pp. 1361-1370. Institute of Electrical and Electronics Engineers (IEEE). 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022-06-19 - 2022-06-20, New Orleans, LA, USA. doi: 10.1109/CVPRW56347.2022.00142. ISBN 978-166548739-9. ISSN 2160-7508.
PDF
5MB |
Abstract
Climate change is perhaps the biggest single threat to humankind and the environment, as it severely impacts our terrestrial surface, home to most of the living species. Inspired by video prediction and exploiting the availability of Copernicus Sentinel-2 images, recent studies have attempted to forecast the land surface evolution as a function of past land surface evolution, elevation, and weather. Further extending this paradigm, we propose a model based on convolutional long short-term memory (ConvLSTM) that is computationally efficient (lightweight), however obtains superior results to the previous baselines. By introducing a ConvLSTM-based architecture to this problem, we can not only ingest the heterogeneous data sources (Sentinel-2 time-series, weather data, and a Digital Elevation Model (DEM)) but also explicitly condition the future predictions on the weather. Our experiments confirm the importance of weather parameters in understanding the land cover dynamics and show that weather maps are significantly more important than the DEM in this task. Furthermore, we perform generative simulations to investigate how varying a single weather parameter can alter the evolution of the land surface. All studies are performed using the EarthNet2021 dataset. The code, additional materials and results can be found at https://github.com/dcodrut/weather2land.
Item URL in elib: | https://elib.dlr.de/190141/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Title: | Understanding the Role of Weather Data for Earth Surface Forecasting using a ConvLSTM-based Model | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | August 2022 | ||||||||||||||||||||
Journal or Publication Title: | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.1109/CVPRW56347.2022.00142 | ||||||||||||||||||||
Page Range: | pp. 1361-1370 | ||||||||||||||||||||
Publisher: | Institute of Electrical and Electronics Engineers (IEEE) | ||||||||||||||||||||
Series Name: | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) | ||||||||||||||||||||
ISSN: | 2160-7508 | ||||||||||||||||||||
ISBN: | 978-166548739-9 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Optical Time Series, Deep Learning, ConvLSTM, Land Surface Reflection Forecasting | ||||||||||||||||||||
Event Title: | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) | ||||||||||||||||||||
Event Location: | New Orleans, LA, USA | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Start Date: | 19 June 2022 | ||||||||||||||||||||
Event End Date: | 20 June 2022 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Optical remote sensing, R - Artificial Intelligence | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||
Deposited By: | Diaconu, Codrut-Andrei | ||||||||||||||||||||
Deposited On: | 22 Nov 2022 12:48 | ||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:51 |
Repository Staff Only: item control page