Diaconu, Codrut-Andrei und Saha, Sudipan und Gunnemann, Stephan und Zhu, Xiao Xiang (2022) Understanding the Role of Weather Data for Earth Surface Forecasting using a ConvLSTM-based Model. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022, Seiten 1361-1370. Institute of Electrical and Electronics Engineers (IEEE). 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2022-06-19 - 2022-06-20, New Orleans, LA, USA. doi: 10.1109/CVPRW56347.2022.00142. ISBN 978-166548739-9. ISSN 2160-7508.
PDF
5MB |
Kurzfassung
Climate change is perhaps the biggest single threat to humankind and the environment, as it severely impacts our terrestrial surface, home to most of the living species. Inspired by video prediction and exploiting the availability of Copernicus Sentinel-2 images, recent studies have attempted to forecast the land surface evolution as a function of past land surface evolution, elevation, and weather. Further extending this paradigm, we propose a model based on convolutional long short-term memory (ConvLSTM) that is computationally efficient (lightweight), however obtains superior results to the previous baselines. By introducing a ConvLSTM-based architecture to this problem, we can not only ingest the heterogeneous data sources (Sentinel-2 time-series, weather data, and a Digital Elevation Model (DEM)) but also explicitly condition the future predictions on the weather. Our experiments confirm the importance of weather parameters in understanding the land cover dynamics and show that weather maps are significantly more important than the DEM in this task. Furthermore, we perform generative simulations to investigate how varying a single weather parameter can alter the evolution of the land surface. All studies are performed using the EarthNet2021 dataset. The code, additional materials and results can be found at https://github.com/dcodrut/weather2land.
elib-URL des Eintrags: | https://elib.dlr.de/190141/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | Understanding the Role of Weather Data for Earth Surface Forecasting using a ConvLSTM-based Model | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | August 2022 | ||||||||||||||||||||
Erschienen in: | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2022 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/CVPRW56347.2022.00142 | ||||||||||||||||||||
Seitenbereich: | Seiten 1361-1370 | ||||||||||||||||||||
Verlag: | Institute of Electrical and Electronics Engineers (IEEE) | ||||||||||||||||||||
Name der Reihe: | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) | ||||||||||||||||||||
ISSN: | 2160-7508 | ||||||||||||||||||||
ISBN: | 978-166548739-9 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Optical Time Series, Deep Learning, ConvLSTM, Land Surface Reflection Forecasting | ||||||||||||||||||||
Veranstaltungstitel: | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) | ||||||||||||||||||||
Veranstaltungsort: | New Orleans, LA, USA | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 19 Juni 2022 | ||||||||||||||||||||
Veranstaltungsende: | 20 Juni 2022 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Diaconu, Codrut-Andrei | ||||||||||||||||||||
Hinterlegt am: | 22 Nov 2022 12:48 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags