Huang, Zhongling and Yao, Xiwen and Liu, Ying and Dumitru, Corneliu and Datcu, Mihai and Han, Junwei (2022) Physically explainable CNN for SAR image classification. ISPRS Journal of Photogrammetry and Remote Sensing (190), pp. 25-37. Elsevier. doi: 10.1016/j.isprsjprs.2022.05.008. ISSN 0924-2716.
Full text not available from this repository.
Official URL: https://www.sciencedirect.com/science/article/pii/S0924271622001472
Abstract
Integrating the special electromagnetic characteristics of Synthetic Aperture Radar (SAR) in deep neural networks is essential in order to enhance the explainability and physics awareness of deep learning. In this paper, we first propose a novel physically explainable convolutional neural network for SAR image classification, namely physics guided and injected learning (PGIL). It comprises three parts: (1) explainable models (XM) to provide prior physics knowledge, (2) physics guided network (PGN) to encode the knowledge into physics-aware features, and (3) physics injected network (PIN) to adaptively introduce the physics-aware features into classification pipeline for label prediction. A hybrid Image-Physics SAR dataset format is proposed for evaluation, with both Sentinel-1 and Gaofen-3 SAR data being experimented. The results show that the proposed PGIL substantially improve the classification performance in case of limited labeled data compared with the counterpart data-driven CNN and other pre-training methods. Additionally, the physics explanations are discussed to indicate the interpretability and the physical consistency preserved in the predictions. We deem the proposed method would promote the development of physically explainable deep learning in SAR image interpretation field.
Item URL in elib: | https://elib.dlr.de/190073/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Title: | Physically explainable CNN for SAR image classification | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | August 2022 | ||||||||||||||||||||||||||||
Journal or Publication Title: | ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
DOI: | 10.1016/j.isprsjprs.2022.05.008 | ||||||||||||||||||||||||||||
Page Range: | pp. 25-37 | ||||||||||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||||||||||
Series Name: | ISPR | ||||||||||||||||||||||||||||
ISSN: | 0924-2716 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Explainable deep learningPhysical modelSAR image classificationPrior knowledge | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||||||
Deposited By: | Dumitru, Corneliu Octavian | ||||||||||||||||||||||||||||
Deposited On: | 14 Nov 2022 14:35 | ||||||||||||||||||||||||||||
Last Modified: | 27 Jun 2023 08:38 |
Repository Staff Only: item control page