Stoiber, Manuel and Sundermeyer, Martin and Triebel, Rudolph (2022) Iterative Corresponding Geometry: Fusing Region and Depth for Highly Efficient 3D Tracking of Textureless Objects. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, pp. 6845-6855. IEEE. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022-06-18 - 2022-06-24, New Orleans, LA, USA. doi: 10.1109/CVPR52688.2022.00673. ISBN 978-166546946-3. ISSN 1063-6919.
PDF
920kB | |
PDF
253kB |
Official URL: https://ieeexplore.ieee.org/document/9879565
Abstract
Tracking objects in 3D space and predicting their 6DoF pose is an essential task in computer vision. State-of-the-art approaches often rely on object texture to tackle this problem. However, while they achieve impressive results, many objects do not contain sufficient texture, violating the main underlying assumption. In the following, we thus propose ICG, a novel probabilistic tracker that fuses region and depth information and only requires the object geometry. Our method deploys correspondence lines and points to iteratively refine the pose. We also implement robust occlusion handling to improve performance in real-world settings. Experiments on the YCB-Video, OPT, and Choi datasets demonstrate that, even for textured objects, our approach outperforms the current state of the art with respect to accuracy and robustness. At the same time, ICG shows fast convergence and outstanding efficiency, requiring only 1.3 ms per frame on a single CPU core. Finally, we analyze the influence of individual components and discuss our performance compared to deep learning-based methods. The source code of our tracker is publicly available.
Item URL in elib: | https://elib.dlr.de/189883/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||
Title: | Iterative Corresponding Geometry: Fusing Region and Depth for Highly Efficient 3D Tracking of Textureless Objects | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | June 2022 | ||||||||||||||||
Journal or Publication Title: | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
DOI: | 10.1109/CVPR52688.2022.00673 | ||||||||||||||||
Page Range: | pp. 6845-6855 | ||||||||||||||||
Publisher: | IEEE | ||||||||||||||||
ISSN: | 1063-6919 | ||||||||||||||||
ISBN: | 978-166546946-3 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | 3D Object Tracking, 6DoF Pose estimation, Region, Depth, Textureless, Sparse, Real-time, Probabilistic | ||||||||||||||||
Event Title: | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) | ||||||||||||||||
Event Location: | New Orleans, LA, USA | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 18 June 2022 | ||||||||||||||||
Event End Date: | 24 June 2022 | ||||||||||||||||
Organizer: | The Computer Vision Foundation | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Robotics | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R RO - Robotics | ||||||||||||||||
DLR - Research theme (Project): | R - Multisensory World Modelling (RM) [RO], R - E3D: Algorithms and Application (RM) [RO] | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Institute of Robotics and Mechatronics (since 2013) > Perception and Cognition | ||||||||||||||||
Deposited By: | Stoiber, Manuel | ||||||||||||||||
Deposited On: | 09 Nov 2022 11:18 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:51 |
Repository Staff Only: item control page