Koller, Christoph and Hechinger, Katharina and Shahzad, Muhammad and Kauermann, Göran and Zhu, Xiao Xiang (2022) Advances in Uncertainty-Guided Local Climate Zone Classification. AI4EO International Future Lab Symposium, 2022-10-13 - 2022-10-14, Ottobrunn, Deutschland.
PDF
1MB |
Abstract
Like many other research fields, remote sensing has been greatly impacted by machine and deep learning and benefits from technological and computational advances. In recent years, considerable effort has been spent on deriving not just accurate, but also reliable models which yield a sense of predictive uncertainty. In the particular framework of image classification, the reliability is e.g. validated by cross-checking the model’s confidence in its predictions against the resulting accuracy. Predictive uncertainties, on the other hand, can be for example used to determine expressive data samples. We investigate model reliability in the framework of Local Climate Zone (LCZ) classification, using the So2Sat LCZ42 [1] data set comprised of Sentinel-1 and Sentinel-2 image pairs. [1] X. X. Zhu, J. Hu, C. Qiu, Y. Shi, J. Kang, L. Mou, H. Bagheri, M. Haberle, Y. Hua, R. Huang et al., “So2sat lcz42: a benchmark data set for the classification of global local climate zones [software and data sets],” IEEE Geoscience and Remote Sensing Magazine, vol. 8, no. 3, pp. 76–89, 2020.
Item URL in elib: | https://elib.dlr.de/189838/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||||||
Title: | Advances in Uncertainty-Guided Local Climate Zone Classification | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Uncertainty Quantification, Local Climate Zones, Calibration, Label Uncertainty | ||||||||||||||||||||||||
Event Title: | AI4EO International Future Lab Symposium | ||||||||||||||||||||||||
Event Location: | Ottobrunn, Deutschland | ||||||||||||||||||||||||
Event Type: | national Conference | ||||||||||||||||||||||||
Event Start Date: | 13 October 2022 | ||||||||||||||||||||||||
Event End Date: | 14 October 2022 | ||||||||||||||||||||||||
Organizer: | TUM | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||||||||||
Deposited By: | Koller, Christoph | ||||||||||||||||||||||||
Deposited On: | 11 Nov 2022 10:48 | ||||||||||||||||||||||||
Last Modified: | 24 Apr 2024 20:51 |
Repository Staff Only: item control page