Traoré, Kalifou René and Camero, Andrés and Zhu, Xiao Xiang (2023) A Data-driven Approach to Neural Architecture Search Initialization. Annals of Mathematics and Artificial Intelligence, pp. 1-28. Springer Nature. doi: 10.1007/s10472-022-09823-0. ISSN 1012-2443.
This is the latest version of this item.
PDF
- Published version
3MB |
Official URL: https://rdcu.be/dgJ6b
Abstract
Algorithmic design in neural architecture search (NAS) has received a lot of attention, aiming to improve performance and reduce computational cost. Despite the great advances made, few authors have proposed to tailor initialization techniques for NAS. However, the literature shows that a good initial set of solutions facilitates finding the optima. Therefore, in this study, we propose a data-driven technique to initialize a population-based NAS algorithm. First, we perform a calibrated clustering analysis of the search space, and second, we extract the centroids and use them to initialize a NAS algorithm. We benchmark our proposed approach against random and Latin hypercube sampling initialization using three population-based algorithms, namely a genetic algorithm, an evolutionary algorithm, and aging evolution, on CIFAR-10. More specifically, we use NAS-Bench-101 to leverage the availability of NAS benchmarks. The results show that compared to random and Latin hypercube sampling, the proposed initialization technique enables achieving significant long-term improvements for two of the search baselines, and sometimes in various search scenarios (various training budget). Besides, we also investigate how an initial population gathered on the tabular benchmark can be used for improving search on another dataset, the So2Sat LCZ-42. Our results show similar improvements on the target dataset, despite a limited training budget. Moreover, we analyse the distributions of solutions obtained and find that that the population provided by the data-driven initialization technique enables retrieving local optima (maxima) of high fitness and similar configurations.
Item URL in elib: | https://elib.dlr.de/189823/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | A Data-driven Approach to Neural Architecture Search Initialization | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 22 March 2023 | ||||||||||||||||
Journal or Publication Title: | Annals of Mathematics and Artificial Intelligence | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
DOI: | 10.1007/s10472-022-09823-0 | ||||||||||||||||
Page Range: | pp. 1-28 | ||||||||||||||||
Publisher: | Springer Nature | ||||||||||||||||
ISSN: | 1012-2443 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | AutoML, Neural Architecture Search, Evolutionary Computation, Search, Initialization | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Traoré, Mr René | ||||||||||||||||
Deposited On: | 22 Nov 2022 13:12 | ||||||||||||||||
Last Modified: | 22 Mar 2024 03:00 |
Available Versions of this Item
- A Data-driven Approach to Neural Architecture Search Initialization. (deposited 22 Nov 2022 13:12) [Currently Displayed]
Repository Staff Only: item control page