elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Earth Observation Data Classification with Quantum Classical Convolutional Neural Network

Fan, Fan and Shi, Yilei and Zhu, Xiao Xiang (2022) Earth Observation Data Classification with Quantum Classical Convolutional Neural Network. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 191-194. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883949.

[img] PDF
3MB

Abstract

Due to the rapid growth of earth observation (EO) data and the complexity of machine learning models, the high requirement on the computation power for EO data analysis becomes a bottleneck. Exploiting quantum computing might tackle this challenge in the future. In this paper, we present a hybrid quantum-classical convolutional neural network (QC-CNN) to classify EO data which can accelerate feature extraction compared with its classical counterpart and handle multi-category classification tasks with reduced quantum resources. The model’s validity is verified with the Overhead-MNIST dataset through the TensorFlow Quantum platform.

Item URL in elib:https://elib.dlr.de/189794/
Document Type:Conference or Workshop Item (Speech)
Title:Earth Observation Data Classification with Quantum Classical Convolutional Neural Network
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Fan, FanUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Shi, YileiUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Zhu, Xiao XiangUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:2022
Journal or Publication Title:International Geoscience and Remote Sensing Symposium (IGARSS)
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:No
DOI:10.1109/IGARSS46834.2022.9883949
Page Range:pp. 191-194
Status:Published
Keywords:Earth Observation, Image Classification, Quantum Machine Learning, Quantum Circuit
Event Title:IGARSS 2022
Event Location:Kuala Lumpur, Malaysia
Event Type:international Conference
Event Start Date:17 July 2022
Event End Date:22 July 2022
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Artificial Intelligence
Location: Oberpfaffenhofen
Institutes and Institutions:Remote Sensing Technology Institute > EO Data Science
Deposited By: Fan, Fan
Deposited On:09 Nov 2022 14:04
Last Modified:24 Apr 2024 20:51

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.