Fan, Fan and Shi, Yilei and Zhu, Xiao Xiang (2022) Earth Observation Data Classification with Quantum Classical Convolutional Neural Network. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 191-194. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883949.
PDF
3MB |
Abstract
Due to the rapid growth of earth observation (EO) data and the complexity of machine learning models, the high requirement on the computation power for EO data analysis becomes a bottleneck. Exploiting quantum computing might tackle this challenge in the future. In this paper, we present a hybrid quantum-classical convolutional neural network (QC-CNN) to classify EO data which can accelerate feature extraction compared with its classical counterpart and handle multi-category classification tasks with reduced quantum resources. The model’s validity is verified with the Overhead-MNIST dataset through the TensorFlow Quantum platform.
Item URL in elib: | https://elib.dlr.de/189794/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||
Title: | Earth Observation Data Classification with Quantum Classical Convolutional Neural Network | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2022 | ||||||||||||||||
Journal or Publication Title: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9883949 | ||||||||||||||||
Page Range: | pp. 191-194 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Earth Observation, Image Classification, Quantum Machine Learning, Quantum Circuit | ||||||||||||||||
Event Title: | IGARSS 2022 | ||||||||||||||||
Event Location: | Kuala Lumpur, Malaysia | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 17 July 2022 | ||||||||||||||||
Event End Date: | 22 July 2022 | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Artificial Intelligence | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > EO Data Science | ||||||||||||||||
Deposited By: | Fan, Fan | ||||||||||||||||
Deposited On: | 09 Nov 2022 14:04 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:51 |
Repository Staff Only: item control page