Fan, Fan und Shi, Yilei und Zhu, Xiao Xiang (2022) Earth Observation Data Classification with Quantum Classical Convolutional Neural Network. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 191-194. IGARSS 2022, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9883949.
|
PDF
3MB |
Kurzfassung
Due to the rapid growth of earth observation (EO) data and the complexity of machine learning models, the high requirement on the computation power for EO data analysis becomes a bottleneck. Exploiting quantum computing might tackle this challenge in the future. In this paper, we present a hybrid quantum-classical convolutional neural network (QC-CNN) to classify EO data which can accelerate feature extraction compared with its classical counterpart and handle multi-category classification tasks with reduced quantum resources. The model’s validity is verified with the Overhead-MNIST dataset through the TensorFlow Quantum platform.
| elib-URL des Eintrags: | https://elib.dlr.de/189794/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
| Titel: | Earth Observation Data Classification with Quantum Classical Convolutional Neural Network | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 2022 | ||||||||||||||||
| Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| DOI: | 10.1109/IGARSS46834.2022.9883949 | ||||||||||||||||
| Seitenbereich: | Seiten 191-194 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Earth Observation, Image Classification, Quantum Machine Learning, Quantum Circuit | ||||||||||||||||
| Veranstaltungstitel: | IGARSS 2022 | ||||||||||||||||
| Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||||||
| Veranstaltungsende: | 22 Juli 2022 | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
| Hinterlegt von: | Fan, Fan | ||||||||||||||||
| Hinterlegt am: | 09 Nov 2022 14:04 | ||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags