Matha, Marcel and Kucharczyk, Karsten (2022) Applicability of machine learning in uncertainty quantification of turbulence models. Other. Institut für Antriebstechnik. 17 S.
PDF
1MB |
Abstract
The aim of this work is to apply and analyze machine learning methods for uncertainty quantification of turbulence models. In this work we investigate the classical and data-driven variants of the eigenspace perturbation method. This methodology is designed to estimate the uncertainties related to the shape of the modeled Reynolds stress tensor in the Navier-Stokes equations for Computational Fluid Dynamics (CFD). The underlying methodology is extended by adding a data-driven, physics-constrained machine learning approach in order to predict local perturbations of the Reynolds stress tensor. Using separated two-dimensional flows, we investigate the generalization properties of the machine learning models and shed a light on impacts of applying a data-driven extension.
Item URL in elib: | https://elib.dlr.de/189642/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Monograph (Other) | ||||||||||||
Title: | Applicability of machine learning in uncertainty quantification of turbulence models | ||||||||||||
Authors: |
| ||||||||||||
Date: | October 2022 | ||||||||||||
Refereed publication: | No | ||||||||||||
Open Access: | Yes | ||||||||||||
Number of Pages: | 17 | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | uncertainty quantification, turbulence modeling, Reynolds Averaged Navier Stokes, machine learning, data-driven modeling, random forest regression | ||||||||||||
Institution: | Institut für Antriebstechnik | ||||||||||||
Department: | Numerische Methoden | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Aeronautics | ||||||||||||
HGF - Program Themes: | Clean Propulsion | ||||||||||||
DLR - Research area: | Aeronautics | ||||||||||||
DLR - Program: | L CP - Clean Propulsion | ||||||||||||
DLR - Research theme (Project): | L - Virtual Engine | ||||||||||||
Location: | Köln-Porz | ||||||||||||
Institutes and Institutions: | Institute of Propulsion Technology | ||||||||||||
Deposited By: | Matha, Marcel | ||||||||||||
Deposited On: | 17 Nov 2022 11:20 | ||||||||||||
Last Modified: | 17 Nov 2022 11:20 |
Repository Staff Only: item control page