Matha, Marcel und Kucharczyk, Karsten (2022) Applicability of machine learning in uncertainty quantification of turbulence models. sonstiger Bericht. Institut für Antriebstechnik. 17 S.
|
PDF
1MB |
Kurzfassung
The aim of this work is to apply and analyze machine learning methods for uncertainty quantification of turbulence models. In this work we investigate the classical and data-driven variants of the eigenspace perturbation method. This methodology is designed to estimate the uncertainties related to the shape of the modeled Reynolds stress tensor in the Navier-Stokes equations for Computational Fluid Dynamics (CFD). The underlying methodology is extended by adding a data-driven, physics-constrained machine learning approach in order to predict local perturbations of the Reynolds stress tensor. Using separated two-dimensional flows, we investigate the generalization properties of the machine learning models and shed a light on impacts of applying a data-driven extension.
| elib-URL des Eintrags: | https://elib.dlr.de/189642/ | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Berichtsreihe (sonstiger Bericht) | ||||||||||||
| Titel: | Applicability of machine learning in uncertainty quantification of turbulence models | ||||||||||||
| Autoren: |
| ||||||||||||
| Datum: | Oktober 2022 | ||||||||||||
| Referierte Publikation: | Nein | ||||||||||||
| Open Access: | Ja | ||||||||||||
| Seitenanzahl: | 17 | ||||||||||||
| Status: | veröffentlicht | ||||||||||||
| Stichwörter: | uncertainty quantification, turbulence modeling, Reynolds Averaged Navier Stokes, machine learning, data-driven modeling, random forest regression | ||||||||||||
| Institution: | Institut für Antriebstechnik | ||||||||||||
| Abteilung: | Numerische Methoden | ||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
| HGF - Programm: | Luftfahrt | ||||||||||||
| HGF - Programmthema: | Umweltschonender Antrieb | ||||||||||||
| DLR - Schwerpunkt: | Luftfahrt | ||||||||||||
| DLR - Forschungsgebiet: | L CP - Umweltschonender Antrieb | ||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Triebwerk | ||||||||||||
| Standort: | Köln-Porz | ||||||||||||
| Institute & Einrichtungen: | Institut für Antriebstechnik | ||||||||||||
| Hinterlegt von: | Matha, Marcel | ||||||||||||
| Hinterlegt am: | 17 Nov 2022 11:20 | ||||||||||||
| Letzte Änderung: | 17 Nov 2022 11:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags