Matha, Marcel und Kucharczyk, Karsten (2022) Applicability of machine learning in uncertainty quantification of turbulence models. sonstiger Bericht. Institut für Antriebstechnik. 17 S.
PDF
1MB |
Kurzfassung
The aim of this work is to apply and analyze machine learning methods for uncertainty quantification of turbulence models. In this work we investigate the classical and data-driven variants of the eigenspace perturbation method. This methodology is designed to estimate the uncertainties related to the shape of the modeled Reynolds stress tensor in the Navier-Stokes equations for Computational Fluid Dynamics (CFD). The underlying methodology is extended by adding a data-driven, physics-constrained machine learning approach in order to predict local perturbations of the Reynolds stress tensor. Using separated two-dimensional flows, we investigate the generalization properties of the machine learning models and shed a light on impacts of applying a data-driven extension.
elib-URL des Eintrags: | https://elib.dlr.de/189642/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Berichtsreihe (sonstiger Bericht) | ||||||||||||
Titel: | Applicability of machine learning in uncertainty quantification of turbulence models | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Oktober 2022 | ||||||||||||
Referierte Publikation: | Nein | ||||||||||||
Open Access: | Ja | ||||||||||||
Seitenanzahl: | 17 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | uncertainty quantification, turbulence modeling, Reynolds Averaged Navier Stokes, machine learning, data-driven modeling, random forest regression | ||||||||||||
Institution: | Institut für Antriebstechnik | ||||||||||||
Abteilung: | Numerische Methoden | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||
HGF - Programmthema: | Umweltschonender Antrieb | ||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||
DLR - Forschungsgebiet: | L CP - Umweltschonender Antrieb | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Triebwerk | ||||||||||||
Standort: | Köln-Porz | ||||||||||||
Institute & Einrichtungen: | Institut für Antriebstechnik | ||||||||||||
Hinterlegt von: | Matha, Marcel | ||||||||||||
Hinterlegt am: | 17 Nov 2022 11:20 | ||||||||||||
Letzte Änderung: | 17 Nov 2022 11:20 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags