elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A Robust Observation, Planning, and Control Pipeline for Autonomous Rendezvous with Tumbling Targets

Albee, Keenan und Oestreich, Charles und Specht, Caroline und Terán Espinoza, Antonio und Todd, Jessica und Hokaj, Ian und Lampariello, Roberto und Linares, Richard (2021) A Robust Observation, Planning, and Control Pipeline for Autonomous Rendezvous with Tumbling Targets. Frontiers in Robotics and AI, 8. Frontiers Media S.A. doi: 10.3389/frobt.2021.641338. ISSN 2296-9144.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
3MB

Offizielle URL: https://www.frontiersin.org/articles/10.3389/frobt.2021.641338/full

Kurzfassung

Accumulating space debris edges the space domain ever closer to cascading Kessler syndrome, a chain reaction of debris generation that could dramatically inhibit the practical use of space. Meanwhile, a growing number of retired satellites, particularly in higher orbits like geostationary orbit, remain nearly functional except for minor but critical malfunctions or fuel depletion. Servicing these ailing satellites and cleaning up “high-value” space debris remains a formidable challenge, but active interception of these targets with autonomous repair and deorbit spacecraft is inching closer toward reality as shown through a variety of rendezvous demonstration missions. However, some practical challenges are still unsolved and undemonstrated. Devoid of station-keeping ability, space debris and fuel-depleted satellites often enter uncontrolled tumbles on-orbit. In order to perform on-orbit servicing or active debris removal, docking spacecraft (the “Chaser”) must account for the tumbling motion of these targets (the “Target”), which is oftentimes not known a priori. Accounting for the tumbling dynamics of the Target, the Chaser spacecraft must have an algorithmic approach to identifying the state of the Target’s tumble, then use this information to produce useful motion planning and control. Furthermore, careful consideration of the inherent uncertainty of any maneuvers must be accounted for in order to provide guarantees on system performance. This study proposes the complete pipeline of rendezvous with such a Target, starting from a standoff estimation point to a mating point fixed in the rotating Target’s body frame. A novel visual estimation algorithm is applied using a 3D time-of-flight camera to perform remote standoff estimation of the Target’s rotational state and its principal axes of rotation. A novel motion planning algorithm is employed, making use of offline simulation of potential Target tumble types to produce a look-up table that is parsed on-orbit using the estimation data. This nonlinear programming-based algorithm accounts for known Target geometry and important practical constraints such as field of view requirements, producing a motion plan in the Target’s rotating body frame. Meanwhile, an uncertainty characterization method is demonstrated which propagates uncertainty in the Target’s tumble uncertainty to provide disturbance bounds on the motion plan’s reference trajectory in the inertial frame. Finally, this uncertainty bound is provided to a robust tube model predictive controller, which provides tube-based robustness guarantees on the system’s ability to follow the reference trajectory translationally. The combination and interfaces of these methods are shown, and some of the practical implications of their use on a planned demonstration on NASA’s Astrobee free-flyer are additionally discussed. Simulation results of each of the components individually and in a complete case study example of the full pipeline are presented as the study prepares to move toward demonstration on the International Space Station.

elib-URL des Eintrags:https://elib.dlr.de/189548/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:A portion of this work was sponsored by the NASA Space Technology Mission Directorate through a NASA Space Technology Research Fellowship under grant 80NSSC17K0077. The Draper Fellow Program also sponsored a portion of this work. Support for this work was also provided under DLR research agreement 67272241. Research reported in this study was supported by the International Space Station U.S. National Laboratory under agreement number UA-2019-969. CO was employed by the company The Charles Stark Draper Laboratory, Inc.
Titel:A Robust Observation, Planning, and Control Pipeline for Autonomous Rendezvous with Tumbling Targets
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Albee, Keenanalbee (at) mit.eduNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Oestreich, CharlesThe Charles Stark Draper Laboratory, IncNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Specht, CarolineCaroline.Specht (at) dlr.dehttps://orcid.org/0000-0002-6070-8620NICHT SPEZIFIZIERT
Terán Espinoza, AntonioMITNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Todd, JessicaMITNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hokaj, IanMITNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Lampariello, RobertoRoberto.Lampariello (at) dlr.dehttps://orcid.org/0000-0002-8479-2900NICHT SPEZIFIZIERT
Linares, RichardMITNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:17 September 2021
Erschienen in:Frontiers in Robotics and AI
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:8
DOI:10.3389/frobt.2021.641338
Verlag:Frontiers Media S.A
ISSN:2296-9144
Status:veröffentlicht
Stichwörter:space robotics, motion planning, robust tube MPC, visual estimation, on-orbit servicing, planning under uncertainty
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Robotik
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RO - Robotik
DLR - Teilgebiet (Projekt, Vorhaben):R - On-Orbit Servicing [RO]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Autonomie und Fernprogrammierung
Hinterlegt von: Specht, Caroline
Hinterlegt am:02 Nov 2022 12:14
Letzte Änderung:29 Mär 2023 00:02

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.