Rewicki, Ferdinand und Gawlikowski, Jakob (2022) Estimating Uncertainty of Deep Learning Multi-Label Classifications Using Laplace Approximation. In: 2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022, Seiten 1560-1563. IEEE. IGARSS 2022 - IEEE International Geoscience and Remote Sensing Symposium, 2022-07-17 - 2022-07-22, Kuala Lumpur, Malaysia. doi: 10.1109/IGARSS46834.2022.9884167. ISBN 978-166542792-0. ISSN 2153-7003.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/9884167
Kurzfassung
Deep learning methods have become valuable tools in remote sensing for tasks like aerial scene classification or land cover analysis. Dealing with noisy and very varying data, the need for reliable confidence statements becomes apparent. While deep learning models are known to yield overconfident pre- dictions, quantifying the model uncertainty of those classi- fiers can help mitigating that effect. Although uncertainty es- timation methods for multi-class classification have been pub- lished, multi-label classification - the task of labelling data with multiple class labels simultaneously - has hardly been considered yet. In this study, we use multi-label Laplace Ap- proximation to estimate the model uncertainty of deep multi- label classifiers and show how this method can improve cali- bration and out-of-distribution detection in the remote sensing domain.
elib-URL des Eintrags: | https://elib.dlr.de/189530/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Estimating Uncertainty of Deep Learning Multi-Label Classifications Using Laplace Approximation | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2022 | ||||||||||||
Erschienen in: | 2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.1109/IGARSS46834.2022.9884167 | ||||||||||||
Seitenbereich: | Seiten 1560-1563 | ||||||||||||
Verlag: | IEEE | ||||||||||||
ISSN: | 2153-7003 | ||||||||||||
ISBN: | 978-166542792-0 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Multi-Label Classification, Bayesian Deep Neural Networks, Uncertainty Estimation, Laplace Ap- proximation, Remote Sensing | ||||||||||||
Veranstaltungstitel: | IGARSS 2022 - IEEE International Geoscience and Remote Sensing Symposium | ||||||||||||
Veranstaltungsort: | Kuala Lumpur, Malaysia | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 17 Juli 2022 | ||||||||||||
Veranstaltungsende: | 22 Juli 2022 | ||||||||||||
Veranstalter : | IEEE | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Grundlagenforschung im Bereich Maschinelles Lernen | ||||||||||||
Standort: | Jena | ||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenanalyse und -intelligenz | ||||||||||||
Hinterlegt von: | Rewicki, Ferdinand | ||||||||||||
Hinterlegt am: | 05 Dez 2022 10:53 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:50 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags