elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

INSIGHTS INTO THE UNSTEADY SHOCK BOUNDARY LAYER INTERACTION

Hergt, Alexander Silvio and Klinner, Joachim and Willert, Christian and Grund, Sebastian and Steinert, Wolfgang (2022) INSIGHTS INTO THE UNSTEADY SHOCK BOUNDARY LAYER INTERACTION. In: ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, GT 2022, 10-A. ASME Turbo Expo Conference, 2022-06-13 - 2022-06-17, Rotterdam, The Netherlands. doi: 10.1115/GT2022-82720. ISBN 978-079188612-0.

Full text not available from this repository.

Abstract

The flow through a transonic compressor cascade is characterized by high unsteadiness due to the shock boundary layer interaction. Investigations in recent years have shown that a detailed understanding of the causes of unsteady shock oscillation is necessary to develop successful approaches to influence it. Therefore, an experimental investigation of the unsteadiness of the shock boundary layer interaction in a transonic compressor cascade has been conducted within the transonic cascade wind tunnel at DLR in Cologne. At an inflow Mach number of 1.05, detailed measurements were carried out with a time-resolved PIV system in combination with a high-speed shadowgraphy setup. In this way it was possible to simultaneously measure both the shock movement and the flow field of the boundary layer under the shock. The analysis of the measured data showed a correlation between the oscillation behaviour of the passage shock and the unsteady flow behaviour within the boundary layer in front of the shock. In the shock oscillation spectra a dominat frequency at 1683 Hz and their first harmonic was found. This frequencies are also be found in the boundary layer flow below and in front of the shock with different amplitutes at three analyzing points in the measured PIV Region. A detailed analysis of the measured data shows that the information of the unsteady shock oscillation propagates under the shock foot over the boundary layer upstream. It becomes clear that the propagation of the oscillating pressure information has an influence on the velocity component normal to the blade surface. This leads to a oscillating flow angle close to the blade. Through this effect, the inflow in itself interacts with the shock front and influences the shock position and structure. Based on this, a new thesis of self-exciting shock oscillation is developed. In addition, the used time-resolved PIV measurement enables an acquisition of the blade vibration behaviour. Within the results of the blade vibration four Eigenmodes are observable. In this context it has been shown that the Eigenmodes of the blades are not stimulated by the flow. On the other hand there is also no exciting interaction of the blades with the flow detectable. The measured data of transonic flow within a compressor cascade presented here are unique and provide new insight into shock movement and interaction with the boundary layer

Item URL in elib:https://elib.dlr.de/189153/
Document Type:Conference or Workshop Item (Speech)
Title:INSIGHTS INTO THE UNSTEADY SHOCK BOUNDARY LAYER INTERACTION
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Hergt, Alexander SilvioUNSPECIFIEDhttps://orcid.org/0009-0008-1643-7326UNSPECIFIED
Klinner, JoachimUNSPECIFIEDhttps://orcid.org/0000-0003-2709-9664UNSPECIFIED
Willert, ChristianUNSPECIFIEDhttps://orcid.org/0000-0002-1668-0181UNSPECIFIED
Grund, SebastianUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Steinert, WolfgangUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Date:June 2022
Journal or Publication Title:ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition, GT 2022
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:No
Volume:10-A
DOI:10.1115/GT2022-82720
ISBN:978-079188612-0
Status:Published
Keywords:Transonic Compressor, Boundary Layer Interaktion
Event Title:ASME Turbo Expo Conference
Event Location:Rotterdam, The Netherlands
Event Type:international Conference
Event Start Date:13 June 2022
Event End Date:17 June 2022
Organizer:ASME
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Aeronautics
HGF - Program Themes:Clean Propulsion
DLR - Research area:Aeronautics
DLR - Program:L CP - Clean Propulsion
DLR - Research theme (Project):L - Virtual Engine, L - Aircraft Technologies and Integration
Location: Köln-Porz
Institutes and Institutions:Institute of Propulsion Technology
Deposited By: Hergt, Dr.-Ing. Alexander
Deposited On:17 Nov 2022 10:54
Last Modified:24 Apr 2024 20:50

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.