Loran, Tamara und Barros Cardoso da Silva, Andre und Joshi, Sushil Kumar und Baumgartner, Stefan V. und Krieger, Gerhard (2022) Ship Detection Based on Faster R-CNN using Range-Compressed Airborne Radar Data. IEEE Geoscience and Remote Sensing Letters. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2022.3229141. ISSN 1545-598X.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9984160
Kurzfassung
Near real-time ship monitoring is crucial for ensuring safety and security at sea. Established ship monitoring systems are the automatic identification system (AIS) and marine radars. However, not all ships are committed to carry an AIS transponder and the marine radars suffer from limited visibility. For these reasons, airborne radars can be used as an additional and supportive sensor for ship monitoring, especially on the open sea. State-of-the-art algorithms for ship detection in radar imagery are based on constant false alarm rate (CFAR). Such algorithms are pixel-based and therefore it can be challenging in practice to achieve near real-time detection. This letter presents two object-oriented ship detectors based on the faster region-based convolutional neural network (R-CNN). The first detector operates in time domain and the second detector operates in Doppler domain of airborne range-compressed (RC) radar data patches. The Faster R-CNN models are trained on thousands of real X-band airborne RC radar data patches containing several ship signals. The robustness of the proposed object-oriented ship detectors are tested on multiple scenarios, showing high recall performance of the models even in very dense multi-target scenarios in the complex inshore environment of the North Sea.
elib-URL des Eintrags: | https://elib.dlr.de/189078/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Ship Detection Based on Faster R-CNN using Range-Compressed Airborne Radar Data | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 14 Dezember 2022 | ||||||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2022.3229141 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Moving target indication (MTI), synthetic aperture radar (SAR), airborne radar, maritime safety, deep learning | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme | ||||||||||||||||||||||||
Hinterlegt von: | Barros Cardoso da Silva, Andre | ||||||||||||||||||||||||
Hinterlegt am: | 15 Dez 2022 11:07 | ||||||||||||||||||||||||
Letzte Änderung: | 19 Okt 2023 11:16 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags