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Abstract— Near real-time ship monitoring is crucial for ensur-
ing safety and security at sea. Established ship monitoring
systems are the automatic identification system (AIS) and marine
radars. However, not all ships are committed to carry an AIS
transponder and the marine radars suffer from limited visibility.
For these reasons, airborne radars can be used as an additional
and supportive sensor for ship monitoring, especially on the
open sea. State-of-the-art algorithms for ship detection in radar
imagery are based on constant false alarm rate (CFAR). Such
algorithms are pixel-based and therefore it can be challenging
in practice to achieve near real-time detection. This letter
presents two object-oriented ship detectors based on the faster
region-based convolutional neural network (R-CNN). The first
detector operates in time domain and the second detector
operates in Doppler domain of airborne Range-Compressed (RC)
radar data patches. The Faster R-CNN models are trained
on thousands of real X-band airborne RC radar data patches
containing several ship signals. The robustness of the proposed
object-oriented ship detectors is tested on multiple scenarios,
showing high recall performance of the models even in very dense
multitarget scenarios in the complex inshore environment of the
North Sea.

Index Terms— Airborne radar, deep learning, maritime safety,
moving target indication (MTI), synthetic aperture radar (SAR).

I. INTRODUCTION

H IGH ship density and illegitimate shipping activities
(e.g., piracy and illegal fishing) are ongoing challenges

for coastal authorities. For enhancing the current maritime
situation awareness, near real-time ship detection as a part
of ship monitoring is needed. Popular and prevalent systems
used for ship monitoring applications are onboard transponder
based systems, such as the automatic identification system
(AIS) [1] and marine radars. However, these systems have
major drawbacks: 1) not all ships, especially the smaller ones,
are obligated to carry an AIS transponder; 2) the reliability of
transponder-based systems depends on the cooperation of the
ships; and 3) the marine radars are limited by their acquisition
range. To overcome these shortcomings, air- and spaceborne
radars have been used as additional data sources. These radars
offer great potential for ship monitoring due to their ability to
cover wide areas and acquire high-resolution data independent
of prevailing weather and daylight conditions [1], [2], [3].
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Unlike spaceborne radars, airborne radars can achieve both
shorter revisits and longer observation times, but not at global
coverage [2], [3], [4].

Conventionally, ship detection methods are based on con-
stant false alarm rate (CFAR), which are powerful and
well-known in the open literature [5]. However, they may
have some drawbacks for their operational use. For instance,
in high-resolution radar data, a single ship can be composed
of thousands of detected pixels. Therefore, after detection,
additional postprocessing (e.g., clustering) becomes necessary
to come up with ship objects, which increases the compu-
tation time. Furthermore, since most CFAR-based algorithms
operate on single pixels but not objects, a number of false
detections may be obtained from other marine objects or
from high-intensity ocean clutter. An additional postprocessing
may be needed afterward for reducing the number of false
detections [5], [6].

Recent studies have shown that the application of deep
learning techniques for ship detection can be a great alternative
with very promising results [7], [8], [9]. In particular, the faster
region-based convolutional neural network (R-CNN) [10] is
currently one of the most employed deep learning frameworks
for ship detection in radar imagery [8].

Most deep learning techniques developed for ship detection
are primarily applied on fully focused synthetic aperture radar
(SAR) images. SAR image generation is a time-consuming
process and is generally not suitable for ship detection with
real-time capability. One potential solution for achieving future
real-time ship detection capability is the use of Range-
Compressed (RC) radar data. Unlike in fully focused SAR
images, for RC data, no range cell migration correction and
azimuth compression using reference functions have to be
carried out, which significantly reduces the overall processing
time. The RC airborne radar data are even more attractive
from the point of view that the signal-to-noise ratio in most
cases is sufficiently large, and they allow for long observa-
tion times which enable continuous monitoring of hotspots.
To the authors’ knowledge, the applicability of deep learning
techniques to RC radar data for ship detection has not yet been
intensively investigated [11].

In this letter, two novel deep learning methodologies are
proposed for detecting the ships using RC airborne radar
data. The first framework detects the ships in time domain,
while the second detects the ships in Doppler domain. The
detectors are based on the Faster R-CNN framework with
a ResNet-50 [12] backbone, which is well-established for
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Fig. 1. Workflow used for generating the training and testing datasets in
time domain and Doppler domain.

ship detection and thus provides a suitable baseline for initial
investigations. They are trained and tested based on eleven
real X-band RC radar datasets acquired with DLR’s airborne
systems F-SAR [13], [14], and DBFSAR (with digital beam-
forming capabilities) [15]. In addition, this letter presents a
detailed comparison between the proposed detectors and a
state-of-the-art CFAR-based ship detector [6].

The remainder of this letter is organized as follows.
Section II describes the process of generating training and
testing datasets. Section III reviews the Faster R-CNN frame-
work. Section IV introduces the study area and the acquired
datasets. Section V presents and discusses the experimental
results. Section VI summarizes the results and concludes the
letter.

II. TRAINING AND TESTING DATASETS GENERATION

As a supervised algorithm, the Faster R-CNN detection
framework requires labeled input data, which means that for all
available RC radar datasets (c.f., Section IV), all ship signals
need to be indicated in the form of radar imagery coordinates
typically expressed as boundary boxes of the ship signals [10].
Due to the large amount of available RC radar data, manual
labeling is not feasible. For this reason, in this letter, the
CFAR-based ship detector proposed by Joshi et al. [6] is used
in combination with the AIS data (c.f., Section IV) for a fully
automatic large-scale labeling approach to create the necessary
reference data for training and testing purposes.

Fig. 1 shows the framework used for generating the training
and the testing datasets, which are required inputs for the
two proposed Faster-RCNN ship detectors (c.f., Section III).
First, the RC radar datasets (c.f., Section IV) are partitioned
in time domain along the azimuth or flight direction into data
patches known as coherent processing intervals (CPIs). The
length of the CPI is system parameter dependent [6]. For
instance, in this letter, each CPI contains 128 azimuth samples
and all available range bins. Second, the CPIs are transformed
to range-Doppler domain by applying a fast Fourier transform
(FFT) along the azimuth direction, since the CFAR-based ship
detector used in this letter operates in the Doppler domain [6].

Then, the CPIs are processed by the CFAR-based detector,
which provides the clusters (and the boundary boxes) of the
detected signals. The AIS data are then used for selecting the
real ships from these clustered signals. Once the ships are
verified, their corresponding signals in both time and Doppler
domains are used for labeling. It is pointed out that CPIs
without ship signals were discarded for training.

As shown in Fig. 1, two Faster R-CNN models need to be
trained. The first model is trained for ship detection in time
domain, which uses the CPIs and the corresponding boundary
boxes in time domain. The second model is trained for ship
detection in Doppler domain, using the CPIs and the boundary
boxes in Doppler domain. For both domains, the steps “gray
scaling” and “data splitting” are required. By gray scaling,
the magnitude of the pixels of each CPI is converted to a
magnitude range between 0 and 255 (i.e., the minimum value
is assigned to 0 and the maximum value is assigned to 255).
Then, in the data splitting step, the grayscaled CPIs containing
several ship signals and their associated boundary box labels
are assigned to one of the three datasets: training, validation,
and testing, with the respective ratio of 70%, 15%, and 15%.

Additional investigations were carried out regarding the ben-
efits of using a pretrained model instead of training the Faster
R-CNN models from scratch. Therefore, a Faster R-CNN
model, which was trained on microsoft common objects in
context (COCO) [16], was investigated for the time and
Doppler domain. However, after fine-tuning the model for each
domain, no benefit occurred.

III. FASTER R-CNN SHIP DETECTORS

As a two-stage detection model, the Faster R-CNN detector
predicts in the first step regions where an object might be
located. In the second step, a regression and classification are
carried out to retrieve the accurate object boundary box and
its object category [10]. Single-stage detectors, in contrast,
locate, classify, and predict the object boundary box in a single
step, whereby these detectors tend to be faster due to their
lower complexity. Hence, they are often used if the hardware
is limited or the processing time is critical. However, since
there is a trade-off between accuracy and time, single-stage
detectors are known to be less accurate than the two-stage
detectors [8].

The Faster R-CNN [10] ship detectors were implemented
with PyTorch. As the backbone of the Faster R-CNN models
the well-established ResNet-50 [12] CNN was chosen, which
is known to achieve high accuracy [8]. Training and testing
of the Faster R-CNN detectors in time and Doppler domain
were carried out on a processing server equipped with a Tesla
V100 SXM2 32GB graphics card by using a single GPU. Over
31 306 CPIs containing ship signals from 57 ships (with AIS
transponders) were used for training and testing the proposed
detectors. The models were trained over 60 epochs.

For evaluating the accuracy of the implemented Faster
R-CNN detectors (c.f., Table I), the following metrics are
used [17]:

p = TP

TP + FP
(1)

r = TP

TP + FN
(2)
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Fig. 2. Study area and the flight sections (A–D) within the Elbe river estuary
at the German North Sea coast.

where TP (true positives) is the number of correctly detected
ship signals, FP (false positives) is the number of signals
which were incorrectly detected as a ship signal, and FN (false
negatives) is the number of ship signals that were not detected.

While the precision p indicates the reliability of a model in
detecting the ship signals correctly, the recall r identifies the
effectiveness of a model in detecting ship signals by consider-
ing the missing detections (FN). A detection is considered as
TP if there is a spatial overlap between the predicted bounding
box and the reference bounding box (i.e., obtained from the
CFAR-based detector, c.f., Section II).

To assess the overall performance of the detectors, the
F1-score was calculated [17]

F1-score = 2 × p × r

p + r
(3)

which indicates the balance between r and p.

IV. STUDY AREA AND DATA

The study was carried out in the southeastern part of the
North Sea, close to the city Cuxhaven, Germany. High-density
ship traffic makes the area particularly well suited for ship
detection studies. In 2016 and 2019, two flight campaigns
were conducted. For the flight campaign 2016, the RC airborne
radar data were acquired with DLR’s F-SAR system [13], [14]
and in 2019 DLR’s DBFSAR [15] system was used. Both
systems were mounted on a Do-228 aircraft and operated in
X-band. Fig. 2 shows the flight sections A–D within the study
area. These flight sections differ in complexity in terms of
natural and man-made structures.

In total, 11 VV-polarized datasets were considered for this
study. Eight datasets were used for training and validation, and
three datasets were used as testing data. The RC radar data
were acquired during linear flights and circular flights, and
cover an area of about 1062 km2. Fig. 3 shows the acquisition
geometries of the testing datasets 1–3.

Besides the airborne RC radar data, during the flight cam-
paigns also AIS data were acquired for evaluating the proposed
ship detectors. It is pointed out that only the ships that carried

an AIS transponder were considered in this letter. In total,
57 AIS transponder carrying ships could be identified within
the 11 considered RC radar datasets.

V. EXPERIMENTAL RESULTS

The proposed ship detectors are tested using real X-band
VV-polarized RC airborne radar data. In this section, the
experimental results are presented and discussed. Table I
shows the main information obtained from the 12 AIS car-
rying ships that were detected in the three considered testing
datasets. Moreover, the accuracy metrics obtained per dataset
in the time domain (c.f., Section V-A) and in the Doppler
domain (c.f., Section V-B) are shown. Finally, the performance
of the proposed ship detector operated in Doppler domain is
compared with the state-of-the-art CFAR-based ship detector,
which is proposed in [6].

A. Proposed Ship Detector in Time Domain

As shown in Table I for dataset 1, an accuracy of 98.50%
was achieved for all metrics. Such a high accuracy is explained
by the low complexity of the scene. Dataset 1 was acquired
offshore over flight section A, where the surrounding area of
the ship BAD BRAMSTEDT was free of man-made objects.

For datasets 2–3, the accuracy metrics are lower with respect
to dataset 1 due to the detection of several other man-made
objects (e.g., buoys) present in the scenes. For instance, the
p values for datasets 2–3 were obtained as 65.87% and
27.35%, respectively. Since several other objects were counted
as false detections (which raised the number of FP), the p
value was low. However, it was not possible to determine
if such objects were indeed false detections or ships without
AIS transponders. Therefore, due to the lack of ground truth
validation for such objects, the r values (which consider the
number of FN) are considered more meaningful than the p
values for the complex scenarios of datasets 2–3.

Fig. 4 shows several subsequent grayscaled CPIs obtained
from dataset 1 in time domain. The ship BAD BRAMSTEDT
was detected in all CPIs (c.f., the ship information from AIS in
Table I), so that its observation time was more than 20 s. The
boundary box edges of the reference data (green), generated
from the CFAR-based ship detector [6], are shown along with
the predicted boundary box edges of the proposed Faster R-
CNN (orange) ship detector in time domain.

The predicted boundary boxes by the proposed ship detector
seem to be smooth and fit even better than the reference data
itself. Note that for the reference data, the boundary boxes
overestimated the ship extent in the slant range for several
CPIs due to increased target signal energy as the CFAR-based
algorithm detects only in range-Doppler.

B. Proposed Ship Detector in Doppler Domain

Table I shows that for dataset 1, the accuracy metrics
obtained from the ship detector operated in Doppler domain
are again high due to the low complexity of the scenario,
as already pointed out in Section V-A.

For datasets 2–3, lower accuracies were achieved compared
to dataset 1. The detection of other objects in datasets 2–3
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Fig. 3. Acquisition geometries of the testing datasets 1–3 corresponding to the flight sections shown in Fig. 2.

TABLE I

SHIP INFORMATION FROM THE AIS AND SUMMARY OF ACCURACY METRICS FOR THE TESTING DATASETS

Fig. 4. Detections of the ship signal of BAD BRAMSTEDT in time domain.

has again reduced the p values. The proposed ship detector in
Doppler domain achieved less FP and less TP in comparison
with the ship detector in time domain, which lead to higher p
and lower r values. Nevertheless, the achieved r values for
datasets 2–3 are sufficiently high.

As an example, Fig. 5(a) shows the detections of the
ship BAD BRAMSTEDT (dataset 1) in Doppler domain. For
visualization purposes, only the centroids of the predicted
boundary boxes per CPI are shown. The ship was observed for
over 21 s or 393 successive CPIs (c.f., Fig. 4). Since each CPI
corresponds to a different acquisition time, the ship is succes-
sively detected at different Doppler frequencies. Besides, it can
be seen that the proposed ship detector was able to detect the
ship also within the sea clutter band [c.f., Fig. 5(b)]. It is
pointed out that in case of high sea states, smaller ships may
not be detected. In such cases, clutter suppression would need
to be applied before detection.

Fig. 5. (a) Detections of the ship BAD BRAMSTEDT obtained in Doppler
domain by the proposed ship detector. (b) Single CPI in Doppler domain
showing a ship signal within the sea clutter. Unfortunately, the sea state was
not known for this data acquisition.

C. Comparison With CFAR-Based Ship Detector

The proposed detector in Doppler domain is compared with
the CFAR-based detector [6] (which also detects the ships in
Doppler domain) in terms of accuracy and processing time.
The comparison is shown in Fig. 6 for dataset 2. The same
behavior was observed for the other testing datasets.

Dataset 2 contains five AIS carrying ships (c.f., Table I).
Fig. 6(a) shows the binary detection map obtained with the
CFAR-based ship detector [6]. The detections were obtained
in Doppler domain and then were mapped into time domain
for visualization purposes. As it can be seen in the figure, the
CFAR-based detector successfully detected all the ships in the
dataset. However, several isolated false detections were also
obtained due to its pixel-based approach.

Fig. 6(b) shows the improved detection results achieved by
the implemented Faster R-CNN detector operated in Doppler
domain. All ships were detected with less false detections in
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Fig. 6. Binary detection maps obtained from dataset 2 (c.f., Table I).
Detections obtained from (a) CFAR-based ship detector, and (b) the proposed
ship detector. Both detectors were applied in Doppler domain and, only for
visualization purposes, the detections were remapped to time domain.

comparison to the CFAR-based approach. Furthermore, it can
also be seen in Fig. 6(b) that the ship LONGDUIN (in red)
had some missed detections. This is caused by the near range
location of the ship, where the sea clutter contribution is
stronger, and thus making it difficult to detect the ship within
the clutter band (for instance, see Fig. 5(b), where the stronger
clutter power is present in near range).

In Fig. 6(a) and (b), besides the AIS carrying ships, other
objects have been detected that might be ships without AIS
transponders or other man-made objects (e.g., buoys).

For ship monitoring applications, high detection accuracy
and low processing time are important. Therefore, also the
processing time required by the CFAR-based approach [6] and
the proposed ship detectors for detecting a ship signal is com-
pared. In the experiment, one particular CPI of dataset 2 was
processed by each detector 100 times to reduce measurement
fluctuations of the processing server. The processing time per
detector was then averaged.

The proposed detector in Doppler domain achieved a
processing time of 0.088 s whereby the detector outperforms
the CFAR-based detector with a processing time of 0.824 s.
It has to be pointed out that the proposed Faster R-CNN
ship detectors were designed for GPU, while the CFAR-based
method was designed for CPU. Besides, the proposed detectors
could be further optimized in terms of processing time by
replacing the ResNet-50 [12] with a smaller CNN as the
backbone of the Faster R-CNN models.

VI. CONCLUSION

This letter presents two novel object-oriented ship detectors
based on the Faster R-CNN deep learning framework. The
ship detectors are trained and tested using eleven real X-band

RC radar datasets acquired by DLR’s airborne systems F-SAR
and DBFSAR. The first ship detector operates on RC radar
data in time domain, while the second ship detector operates in
Doppler domain. Both detectors were able to detect all the AIS
carrying ships contained in the testing datasets, achieving high
r values even in complex scenarios with several man-made
objects. Compared to the state-of-the-art CFAR-based method
from [6], which operates in Doppler domain, the proposed
ship detector in Doppler domain was able to provide less false
detections and reduced processing time. Nevertheless, it has to
be pointed out that a bias in the precision p and the F1-score
may be expected since the detections obtained from potential
ship objects without AIS transponder are assumed as FP.
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