Osterwind, Adrian and Droste-Rehling, Julian and Vemparala, Manoj Rohit and Helms, Domenik (2022) Hardware Execution Time Prediction for Neural Network Layers. In: Workshops of ECML PKDD 2022, pp. 582-593. Springer Nature Switzerland. ITEM 2022, 19.10.2022-19.10.2022, Grenoble, Frankreich. doi: 10.1007/978-3-031-23618-1_39. ISBN 978-3-031-23617-4.
![]() |
PDF
- Only accessible within DLR bis 1 January 2024
889kB |
Official URL: https://link.springer.com/chapter/10.1007/978-3-031-23618-1_39
Abstract
Abstract. We present an estimation methodology, accurately predicting the execution time for a given embedded Artificial Intelligence (AI) accelerator and a neural network (NN) under analysis. The timing prediction is implemented as a python library called Model of Neural Network Execution Time (MONNET) and is able to perform its predictions analyzing the Keras description of an NN under test within milliseconds. This enables several techniques to design NNs for embedded hardware. Designers can avoid training networks which could be functionally sufficient but will likely fail the timing requirements. The technique can also be included into automated network architecture search algorithms, enabling exact hardware execution times to become one contributor to the search’s target function. In order to perform precise estimations for a target hardware, each new hardware needs to undergo an initial automatic characterization process, using tens of thousands of different small NNs. This process may need several days, depending on the hardware. We tested our methodology for the Intel Neural Compute Stick 2, where we could achieve an root mean squared percentage error (RMSPE) below 21 % for a large range of industry relevant NNs from vision processing.
Item URL in elib: | https://elib.dlr.de/188922/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||
Additional Information: | Acknowledgment This publication was created as part of the research project KI Delta Learning (project number: 19A19013K) funded by the Federal Ministry for Economic Affairs and Energy (BMWi) on the basis of a decision by the German Bundestag. The publication was published by Springer AG | ||||||||||||||||||||
Title: | Hardware Execution Time Prediction for Neural Network Layers | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2022 | ||||||||||||||||||||
Journal or Publication Title: | Workshops of ECML PKDD 2022 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1007/978-3-031-23618-1_39 | ||||||||||||||||||||
Page Range: | pp. 582-593 | ||||||||||||||||||||
Publisher: | Springer Nature Switzerland | ||||||||||||||||||||
Series Name: | Machine Learning and Principles and Practice of Knowledge Discovery in Databases | ||||||||||||||||||||
ISBN: | 978-3-031-23617-4 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Execution time · Prediction · Neural Networks · Analytical Model. | ||||||||||||||||||||
Event Title: | ITEM 2022 | ||||||||||||||||||||
Event Location: | Grenoble, Frankreich | ||||||||||||||||||||
Event Type: | Workshop | ||||||||||||||||||||
Event Dates: | 19.10.2022-19.10.2022 | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Transport | ||||||||||||||||||||
HGF - Program Themes: | other | ||||||||||||||||||||
DLR - Research area: | Transport | ||||||||||||||||||||
DLR - Program: | V - no assignment | ||||||||||||||||||||
DLR - Research theme (Project): | V - no assignment | ||||||||||||||||||||
Location: | Oldenburg | ||||||||||||||||||||
Institutes and Institutions: | Institute of Systems Engineering for Future Mobility > System Evolution and Operation | ||||||||||||||||||||
Deposited By: | Osterwind, Adrian | ||||||||||||||||||||
Deposited On: | 25 Oct 2022 11:46 | ||||||||||||||||||||
Last Modified: | 29 Mar 2023 00:52 |
Repository Staff Only: item control page