
Hardware Execution Time Prediction for Neural
Network Layers

Adrian Osterwind1[0000−0002−0752−8698], Julian Droste-Rehling2, Manoj-Rohit
Vemparala3, and Domenik Helms1[0000−0001−8570−8363]

1 German Aerospace Center (DLR)
Institute of Systems Engineering for Future Mobility

firstname.lastname@dlr.de
https://www.dlr.de/se/
2 Siemens AG (Bremen)

firstname.lastname@siemens.com
3 BMW Autonomous Driving

firstname.lastname@bmw.com

Abstract. We present an estimation methodology, accurately predict-
ing the execution time for a given embedded Artificial Intelligence (AI)
accelerator and a neural network (NN) under analysis. The timing predic-
tion is implemented as a python library called Model of Neural Network
Execution Time (MONNET) and is able to perform its predictions an-
alyzing the Keras description of an NN under test within milliseconds.
This enables several techniques to design NNs for embedded hardware.
Designers can avoid training networks which could be functionally suf-
ficient but will likely fail the timing requirements. The technique can
also be included into automated network architecture search algorithms,
enabling exact hardware execution times to become one contributor to
the search’s target function.
In order to perform precise estimations for a target hardware, each new
hardware needs to undergo an initial automatic characterization process,
using tens of thousands of different small NNs. This process may need
several days, depending on the hardware.
We tested our methodology for the Intel Neural Compute Stick 2, where
we could achieve an root mean squared percentage error (RMSPE) below
21 % for a large range of industry relevant NNs from vision processing.

Keywords: Execution time · Prediction · Neural Networks · Ana-
lytical Model.

1 Introduction

With the constant rise of Artificial Intelligences (AIs) and neural networks (NNs)
in the industry it becomes important to obtain definitive data about execution
constraints of these algorithms. An algorithm must be verified to be able to work
within a certain set of hardware and application constraints. As an example the

https://www.dlr.de/se/


2 Adrian Osterwind et al.

execution time may not exceed a certain threshold in an autonomous vehicle, so
that it is still capable of reacting to the input within safety limits.

The best way to determine this execution time is to measure it on the target
hardware. For complex neural networks and difficult to obtain hardware this is
not always feasible, for example in an automated network architecture search
(NAS). One way of performing hardware execution time aware NAS is to rely
on readily available metrics such as MAC count or number of parameters, which
leads to suboptimal results [10]. Another is to obtain the execution metrics
through hardware in the loop measurements, where feasible [3]. An alternative
is to estimate the execution time of the neural network.

The goal of this work is to develop a gray box modeling methodology, which
is capable of estimating the latency of a given NN, when running on a spe-
cific hardware. This library will be called Model of Neural Network Execution
Time (MONNET). After an initial time intensive analysis (characterization) of
the hardware, the estimator has to be able to run independently of the hardware
itself and within an execution time, small enough to allow comparing different
solutions in a design space exploration or network architecture search conve-
niently.

The only input parameters of the final timing estimator have to be the topol-
ogy of the NN graph and the characterization data for the target hardware. Thus,
it will be possible to apply the estimator directly after specification, avoiding
time expensive training of solutions, which do not meet given constraints.

Another design constraint is the reduction of hardware knowledge needed to
port the estimator to a different target platform. It should be possible to define a
model of a layer type and use it on multiple hardware types. The only hardware
related knowledge required should be how to deploy and benchmark a neural
network on the target hardware.

The rest of this work is organized as follows. In section 2 similar and flanking
work is discussed. This results in a new approach to execution time estimation
in section 3. The timing model is leveraged to estimate the execution time in
section 4. Experimental results of the approach and an evaluation of memory
modeling are discussed in section 5. Section 6 summarizes the work and lays out
some future directions, where this work can be taken.

2 Related Work

Execution time and power consumption modeling is a topic of much research
in literature. NVIDIA uses performance and energy consumption estimation to
inform design decisions in the development of deep NN accelerator hardware [4].

For traditional algorithmic software, there are multiple approaches in litera-
ture. In the area of power measurement different levels of abstraction are used to
represent the modeled process. These are in order from least to most abstracted
gate-, register-transfer-, transaction- and function level modeling. [8]

The advantage of lower abstraction levels is higher accuracy in the estima-
tions. Function level and higher abstracted models on the other hand need less



Hardware Execution Time Prediction for Neural Network Layers 3

in depth knowledge about the exact behaviour of the underlying hardware. This
allows for easier portability of the model to different platforms. [8]

A useful aspect for time and power modeling is knowledge about the memory
utilization and caching strategies utilized. This allows integration of memory
latency into the estimation. In general purpose Central Processing Units (CPUs)
there are different strategies to manage caching. Direct mapped caches allow
writing of memory blocks to predefined locations in the cache. Increasing the
associativity of the cache allows distribution of the cached content to different
places. [5]

NN accelerators such as the herein used Neural Compute Stick 2 (NCS2)
use application specific caching strategies. [6] describes some common memory
caching strategies. Different approaches use different amounts of cache for the
same NN layers, since they change the hierarchy of caching. This would lead to
different amounts of cache accesses in each scheme.

Runtime optimization and complexity estimation of NNs is often done by
comparing either the number of parameters or the number of floating point op-
erations (FLOPs) for a given NNs. This does not accurately match the execution
time of the NN as shown in [10]. A better approach is shown in [9]. Here the
authors use an interpolation driven approach to capture the timing behaviour
of various NN layers. It uses little hardware knowledge to estimate layer timing.

The contribution of this paper uses a similar approach to the one in [9]. It
simplifies the estimator at the cost of a need for a higher amount of samples
to create the model compared to [9]. This should allow for easier use in NAS
approaches [1].

[1] shows several hardware aware NAS-systems. These utilize different met-
rics to determine hardware timing. The simplest method is the integration of
hardware in the loop measurements. Others use models to estimate execution
time ranging from lookup tables to meta-AIs, which learn the timing behaviour
of the hardware.

MONNET, which is presented in this work, leads to better abstraction from
hardware and framework artefacts. This in turn leads to overall higher accu-
racy and better transferability to other hardware accelerators and thus simpler
application in dependant applications such as NAS.

3 Characterization and model building

The timing modeling approach can be separated into two general steps. At first
the model needs to be created and characterized, which is discussed in this
section. A model needs to be defined once for each neural network layer type to
be supported. The characterization needs to be done once per target hardware.

3.1 Model creation

The general model used in this approach is shown in Equation 1.



4 Adrian Osterwind et al.

tl = topl
· nopl

(1)

Here the execution time per layer tl is modeled as the number of operations in one
layer nopl

(the layer complexity) multiplied by the time required per operation
topl

(the efficiency). The number of mathematical operations in a layer, which
is the same for each hardware, is separated from the actual hardware-specific
execution time. This way only the topl

needs to be heuristically determined
(i.e. measured on the target hardware), with nopl

being mathematically derived
from the layer parameters.

The efficiency topl
is not a constant, but depends on the actual layer config-

uration. topl
, as a function of the input parameters, is thus depending on and

reflecting the influence of the hardware itself as well as configuration and arti-
facts of the neural network library and hardware deployment frameworks. Due
to this, it has to be sampled over a large range of parameters for each layer type.

Applying this to one of the most time-consuming and most used layers in a
convolutional neural network, the Convolutional 2D (Conv2D) layer, the com-
plexity can be calculated as follows:

nopl
= kx · ky · c · x′ · y′ · f (2)

The number of operations for each filter is the number of outputs as x′ · y′
multiplied by the kernel size kx · ky and the number of input channels as c.
Multiplying this by the number of filters f results in the number of operations
for each layer.

x′ and y′ themselves are functions of the input size x and y, the stride and if
no padding is applied the kernel size. They are calculated as shown in Equation 3,
with y′ being calculated similarly.

x′ =

{
⌊x−kx

sx
+ 1⌋, if padding = 0(valid)

⌊x−1
sx

+ 1⌋, if padding = ⌊kx

2 ⌋(same)
(3)

To estimate the hardware and deployment framework dependent efficiency
for a given layer, a dataset needs to be collected, containing samples at different
complexities in different configurations. At the time of writing, the sample loca-
tions are determined using manual testing to detect the limits of the hardware
and use case fitting, through evaluation of the test networks and determining
the upper bounds of the network sizes.

For characterization and timing estimation, Equations 1-3 are used. For each
layer the execution time tl can thus be inferred using the base cost per operation
topl

and the complexity nopl
.

The modeling methodology generally relies on the fact, that the inference
time of an entire neural network is the sum of the inference times of all its layers.
This is an assumption which is in general valid and was already introduced by [4].

During initial measurements it turned out, that separating single NN layers
for a characterization can nevertheless have a significant impact on the timing,
measured in hardware. E.g. a Conv2D layer with a 3 × 3 kernel and 32 filters



Hardware Execution Time Prediction for Neural Network Layers 5

Table 1: Result of per layer measurement in the MONNET-tool. Full HW mea-
surement refers to the measurement of the per layer timing, if the layer is still
executed in sequence with all other layers (here in the DenseNet121). Isolation
mode 0 is the measurement of the same layer with identical parameters, but iso-
lated and running standalone. This huge difference is typical and would render
all layer wise modeling impossible. Thus better isolation techniques, mode 1 and
mode 2 (see Figure 2) with better per layer isolation had to be developed.

Measurement type Execution time in mS

Full HW measurement 23±0
Isolation mode 0 45.2 ± 1.46
Isolation mode 1 26.1 ± 0.696
Isolation mode 2 24.8 ± 0.533

working on 7 × 7 × 128 input data has an execution time of 23.0 ± 0.0 ms
(see Table 1), when measured within a DenseNet121. Cutting out this layer and
synthesizing it standalone on hardware will increase the execution time to 45.2
± 1.46 ms. A characterization has to be independent of a specific NN, so that
the approach can be transferred. To eliminate this separation effect, the layers
need to be embedded in a representative testing NN.

In order to gather enough data for a characterization of the estimation model,
an automated synthesis flow is used. The flow starts with the host system, speci-
fying a benchmark or characterization NN for the given layer configuration. Then
it synthesizes the NN for the target hardware, after which it is executed and mea-
sured. Keras was used in order to generate a protobuf description and followed by
the OpenVINO™ [2] toolchain to convert this into a hardware-agnostic, yet run-
time optimized intermediate XML representation. From there, the NN could be
compiled and flashed onto the hardware, using the OpenVINO inference engine.
This toolchain is shown in Figure 1.

Fig. 1: MONNET Toolchain

In order to prevent the layer isolation issue presented in Figure 2, several
methods were developed and tested to properly embed the layer under test. The
embedding mode, which was determined to be the best, is to have a feeding layer
and a consuming layer, both of type Conv2D with a standardized configuration
and to measure only the timing of the middle layer under test, seen in Figure 2.

From Equations 2 and 3 the following parameters of a layer, which can be
directly influenced can be extracted: x, y, c, kx, ky, f , sx, sy and the padding.



6 Adrian Osterwind et al.

Fig. 2: When measuring a single neural network layer in isolation, the timing
may significantly differ from a measurement of the same layer inside a larger
neural network. In order to measure each layer independently, but in a typical
environment, in characterization, the layer under test is embedded between a
feeding layer (mode 1 and 2) and a consuming layer (mode 2)

To decrease the amount of measurements needed, the following assumptions are
made for the characterization of the efficiency term: x = y =: i, and sx = sy =: s.
In the model application, independent input sizes and strides can be described
via the complexity term. This focuses on the most prevalent networks, which are
benchmarked. In those the inputs of the layer are mostly square. Furthermore,
the padding was so far set to same, meaning, that kx and ky have no influence on
the output size as seen in Equation 3. This omission is automatically accounted
for by the complexity term, which calculates the amount of mathematical opera-
tions based on the output size. As a result the characterization space for Conv2D
layers can be described as a hypercube with six dimensions. The characterization
space is the same for Separable Convolutional 2D (SepConv2D) layers.

To ensure reliable data for the characterization, each measurement is repeated
until a likelihood of above 95 % of being within the 95 % confidence interval of
the unknown real mean value is reached. Numpy’s build in statistic tools are
used to compute the probabilities after the fifth measurement first and then
again after each further measurement until measurements converge.

The open source code from OpenVINO was adapted to allow for a repeated
measurement and a stopping condition. As a result of this, the metric to deter-
mine the convergence of the execution time could be tightly integrated into the
measurement process. Before a reflashing of the device was necessary for every
measurement. This step can now be removed, speeding up the characterization
process.

The multilinear interpolation, which is used for the estimation and, which
will be explained in section 4 requires the sampling points to be on a regular grid
in a hypercube. For hardware related reasons not every parameter combination
can be synthesized or executed. If for example the layers are too large and have
atypical parameter combinations such as highest values of input size, channels
and filters at the same time, the hardware might not have enough memory to
execute a layer. In other cases the synthetization requires too much memory on
the host platform. This results in missing sample points.

To mitigate their impact those are automatically determined by interpolation
after hardware characterization. For this a slightly different approach is taken
than is used in the final interpolation for end use. If neighboring values were



Hardware Execution Time Prediction for Neural Network Layers 7

validly sampled, the value is in one axis interpolated. Otherwise, it is set to a
default value, which is determined by the lowest value yet seen in the dataset.

Even though this might seem arbitrary, it is well-chosen and leading to the
best final estimation results. Missing data points typically exist for large and
untypical parameter combinations such as input sizes, channels and filters all in
the several thousands. For large regular tensors, the efficiency of the hardware
tends to flatten out towards the maximum hypothetical efficiency as defined by
the memory bandwidth and / or FLOPs rating.

An attempt was made to replicate the memory modeling from [9], which
is integrated in their approach. Some studies were performed to determine the
viability of automating this on a hardware-agnostic level. Attempts were made
to map the memory models in [7] to our hardware. This led to no usable results
as will be shown in section 5.

4 Timing prediction

Section 3 discussed the creation of the model. To predict an execution time,
which is not within the characterization dataset, a multilinear interpolation is
used.

In this approach the sample space is viewed as an n-dimensional hypercube.
For the Conv2D and SepConv2D layers it has six dimensions as discussed in sec-
tion 3. Two-dimensional activation layers can be reduced to a three-dimensional
characterization space, with the dimensions being ins, inc and activation func-
tion.

(a) 3D starting point (b) 2D reduction (c) 1D reduction (d) Target value

Fig. 3: A multidimensional linear interpolation can be performed for any dimen-
sionality of the to be evaluated layer model by recursively doing linear interpo-
lations for pairs of neighbouring points along one of the dimensions, reducing
the problem dimensions by one.

The interpolation is done stepwise as shown in Figure 3. At each step the
dimensionality of the hypercube is reduced by one. This is done by interpolating
the missing value along the axis linearly. As soon as it reaches a 0-dimensional
state, the value left is the scalar corresponding to topl

. Obtaining the execution



8 Adrian Osterwind et al.

time of the layer requires calculation of the layer complexity and multiplication
of this by topl

.
This approach assumes that topl

changes at a local level nearly linearly, mean-
ing the characterization in section 3 needs to be granular enough to ensure this.
Another approach could be to interpolate the dataset using a piece-wise defined
polynomial, which passes through all sample points. Using this a slope in the
data could be easily modeled. This was attempted but resulted in the following
problem. An erratic behavior was observed if the sample points are too close to-
gether while having a high deviation. This can occur if the data is not continuous
but as observed stepwise. For this see section 5. This resulted in a worse perfor-
mance than the linear approximation, which is only influenced by two sample
points and only affects values in between.

5 Evaluation

For the evaluation of the timing estimation common NN architectures are used.
These can show the strengths and weaknesses of the current model. Specifically
the networks from Table 2 were used.

Table 2: Benchmarking Networks
Network Name Number of layers Number of parameters
AlexNet 34 25730506
DenseNet121 429 8062504
DenseNet169 597 14307880
DenseNet201 709 20242984
InceptionResNetV2 782 55873736
InceptionV3 313 23851784
MobileNet 91 4253864
NASNetLarge 1041 88949818
NASNetMobile 771 5326716
ResNet101 347 44707176
ResNet152 517 60419944
ResNet50 177 25636712
VGG16 23 138357544
VGG19 26 143667240
Xception 134 22910480

The characterization and testing is performed on the NCS2, which is a NN
hardware accelerator developed by Intel®. It uses the Intel Movidius™ Myr-
iad™ X architecture, serving as a Vision Processing Unit. Due to the usage of
the OpenVINO toolchain, multiple NN libraries can be used. In this work the
decision was made to use the TensorFlow Keras libraries, which allows usage of
the predefined models in the Keras applications.



Hardware Execution Time Prediction for Neural Network Layers 9

Table 3: Search space for Conv2D-characterization
Input size 1, 2, 4, 7, 14, 28, 56, 112, 224
Input channels 2, 4, 8, 16, 32, 64, 128, 256, 512, 768, 1024, 2048, 4096
Kernel x 1, 3, 5, 7, 11
Kernel y 1, 3, 5, 7, 11
Filters 2, 4, 8, 16, 32, 64, 128, 256, 512, 768, 1024, 1536
Stride 1, 2

Table 4: Search space for SepConv2D-characterization
Input size 1, 2, 4, 7, 14, 21, 28, 42, 56, 112, 168
Input channels 2, 4, 8, 16, 32, 64, 128, 256, 512, 513, 768, 1024, 1280, 1536
Kernel x 3, 5
Kernel y 3, 5
Filters 2, 4, 8, 16, 32, 64, 128, 192, 256, 512, 513, 768, 1024, 1536, 2048
Stride 1, 2

The comparison focuses primarily on the measured execution time of the
modeled layers compared to the estimated execution time. As of the writing of
this work the only modeled layers are of type Conv2D and SepConv2D. Other
layers such as Activation layers and Pooling layers are being worked on, but the
isolation of the layer still needs work, since the measured timings of layers from
real NNs strongly deviate from the extracted versions.

In most convolutional neural networks (CNNs) the Conv2D-layers require
the highest amount of time to execute. Yet depending on the target application
other layer-types need to be modeled as well, to estimate the timing accurately.

For evaluation purposes a characterization with the parameters in Table 3
and Table 4 was performed for Conv2D and SepConv2D layers respectively.

This results in 70,200 measurements taken for the Conv2D-layers, which is
around twice as much as in [9] and 18,480 for the SepConv2D. This is seen
as a reasonable tradeoff, since the measurements need to be taken only once.
The search space is adapted to the target application, to increase the relevance
of the measurements taken, but could be expanded upon in different target
applications. Networks from the Tensorflow Keras Applications library were used
for benchmarking the timing estimation approach (see Table 2).

Using this characterization the results for the benchmarking networks are
shown in Figure 4. Blue shows the mean average percentage error (MAPE) for
the benchmark networks. Red is the deviation of the estimated execution time
from the real execution times of the layers under test. This results in a root
mean squared percentage error (RMSPE) of 19.02 % for all Conv2D- and 26.38
% and for all SepConv2D-layers. [9] in comparison achieves 42.6 % RMSPE for
all Conv2D-layers on a different set of evaluation networks on the same hardware.



10 Adrian Osterwind et al.

Most of the network estimations stay within a 20 % error margin. The excep-
tions are Xception and DenseNet201. In the case of Xception the fault is within
the estimation of the SepConv2D layers. This could be mitigated by a larger
characterization space for SepConv2D. The DenseNet201 total deviation seems
to occur, since it has many repeating layers. Some of these repeating layers are
not well estimable by MONNET. This results in an accumulation of errors over
the entire network. By including these within the measurement space, the error
could be mitigated. This shows the need for automated selection of the sampling
points.

Fig. 4: Benchmark results showing the MAPE for all Conv2D and SepConv2D
layers(blue). These stay mostly under 20 % with the notable exception of the
Xception network which has numerous SepConv2D layers (34 SepConv2D to
the 6 Conv2D layers). The red bars show the total deviation from the estimable
execution time. Here DenseNet 201 stands out, as it has several repeating layers,
on which the estimation performs poorly.

To evaluate the viability of independent memory modeling several measure-
ment sweeps were performed. Figure 5 shows sweeps varying the input size in y
direction, the kernel size in x and y and the amount of input channels.

All measurements show a general linear rise according to the increase in
complexity. However, at certain parameter values, the execution time jumps
(e.g., for 1024 channels on a (17, 25) input at a (1, 1) kernel [blue curve]). These
jumps are not separable per dimension, but depend on all other parameters, too.
With just one less row of the input size in y direction [green curve], the step size
is significantly reduced from 201 % to 42 %.

Increasing the kernel size from (1, 1) to (3, 3), the curve shows a completely
counterintuitive behavior between 670 and 800 channels, rising in timing by



Hardware Execution Time Prediction for Neural Network Layers 11

200 400 600 800 1000 1200 1400
0

0.5

1

1.5

2

2.5

3

3.5 in_s (17, 25) in_k (1, 1) fi 64 t
in_s (17, 25) in_k (3, 3) fi 64 t
in_s (17, 24) in_k (1, 1) fi 64 t
in_s (17, 24) in_k (3, 3) fi 64 t

in_s ([17, 17], [24, 25]), in_c [5, 1533], k [(1, 1), (3, 3)], fi [64, 64], st (1, 1)

Input channels

t 
in
 m
s

Fig. 5: Execution time as a function of number of input channels for various
parameter combinations. A similar behavior can be observed, when measuring
over the input size of the filter count.

almost 140 % and then falling back to the linear progression. This behavior is
counteracted by decreasing the input size in y direction again to 24.

The results show, that while there are certain regularities, which could be
modeled, large amounts of data would be needed to model the memory behavior
more accurately. At the time of writing the leading theory is, that the system is
layered in such a way, that the OpenVINO toolkit performs different optimiza-
tions on different levels, adding to the size dependent behavior of the memory.
The latter was described in [7].

Due to this the added complexity of a memory modeling approach was left
out of this work, allowing for a simpler model, which could be used for hardware
aware NAS-approaches, while being less hardware dependent than a handcrafted
memory model.

6 Conclusion

In this work MONNET, a timing estimation approach, was presented, which
does not create the need for regarding programming artifacts of the synthesis
flow and/or hardware artifacts of the embedded AI accelerator. Instead, the
model averages over such artifacts, leading to an unavoidable average error for a
concrete evaluation, but on the other hand leading to a much more steady (and
differentiable) description of the general behaviour of the hardware, which can
be used to control manual or automatical architecture searches. The deviation
in the range of 20 % can be corrected by a single hardware measurement after
the neural networks’ topology was defined, and the network was trained. This
work thus introduces a significant improvement over the designer’s best guess or
a MAC and parameter count based timing optimization.

Future work will entail usage of the modeling approach in a hardware aware
NAS loop as shown in [1]. Furthermore, the approach needs to be validated
on other hardware types such as Graphics Processing Units and Field Pro-
grammable Gate Arrays. In the future a system could be created, which au-
tomatically determines the upper limits of the hardware capabilities.



12 Adrian Osterwind et al.

To circumvent problems regarding inter-layer optimizations which could be
performed by the NN compiler, future work could focus on modeling these op-
timizations. This would work similarly to [9], modeling whether a layer is op-
timized out or by mapping the higher level operations to lower level hardware
operations.

Acknowledgment This publication was created as part of the research project
KI Delta Learning (project number: 19A19013K) funded by the Federal Ministry
for Economic Affairs and Energy (BMWi) on the basis of a decision by the
German Bundestag.

References
1. Benmeziane, H., Maghraoui, K.E., Ouarnoughi, H., Niar, S., Wistuba, M., Wang,

N.: A comprehensive survey on hardware-aware neural architecture search (2021).
https://doi.org/10.48550/ARXIV.2101.09336, https://arxiv.org/abs/2101.09336

2. Intel®: Openvino™, https://docs.openvino.ai/latest/get_started.html
3. Mori, Pierpaoloand Vemparala, M.R., Fasfous, N., Mitra, S., Sarkar, S., Frick-

enstein, A., Frickenstein, L., Helms, D., Nagaraja, N.S., Stechele, W., Passerone,
C.: Accelerating and pruning cnns for semantic segmentation on fpga. In: Design
Automation Conference (DAC) (2022)

4. Parashar, A., Raina, P., Shao, Y., Chen, Y.H., Ying, V., Mukkara, A., Venkatesan,
R., Khailany, B., Keckler, S., Emer, J.: Timeloop: A systematic approach to dnn
accelerator evaluation. pp. 304–315 (03 2019). https://doi.org/10.1109/ISPASS.
2019.00042

5. Patterson, D.A., Hennessy, J.L.: Computer Organization and Design: The Hard-
ware/Software Interface. Fifth edition edn.

6. Siu, K., Stuart, D.M., Mahmoud, M., Moshovos, A.: Memory requirements for
convolutional neural network hardware accelerators. In: 2018 IEEE International
Symposium on Workload Characterization (IISWC). pp. 111–121 (2018). https:
//doi.org/10.1109/IISWC.2018.8573527

7. Siu, K., Stuart, D.M., Mahmoud, M., Moshovos, A.: Memory requirements for
convolutional neural network hardware accelerators. In: 2018 IEEE International
Symposium on Workload Characterization (IISWC). pp. 111–121 (2018). https:
//doi.org/10.1109/IISWC.2018.8573527

8. Sotiriou-Xanthopoulos, E., Percy Delicia, G.S., Figuli, P., Siozios, K., Economakos,
G., Becker, J.: A power estimation technique for cycle-accurate higher-abstraction
systemc-based cpu models. In: 2015 International Conference on Embedded Com-
puter Systems: Architectures, Modeling, and Simulation (SAMOS). pp. 70–77
(2015). https://doi.org/10.1109/SAMOS.2015.7363661

9. Wess, M., Ivanov, M., Unger, C., Nookala, A., Wendt, A., Jantsch, A.: Annette:
Accurate neural network execution time estimation with stacked models. IEEE
Access PP, 1–1 (12 2020). https://doi.org/10.1109/ACCESS.2020.3047259

10. Yao, S., Zhao, Y., Shao, H., Liu, S., Liu, D., Su, L., Abdelzaher, T.: FastDeepIoT:
Towards understanding and optimizing neural network execution time on mobile
and embedded devices. In: Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems. ACM (nov 2018). https://doi.org/10.1145/3274783.
3274840, https://doi.org/10.1145%2F3274783.3274840

https://doi.org/10.48550/ARXIV.2101.09336
https://arxiv.org/abs/2101.09336
https://docs.openvino.ai/latest/get_started.html
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/ISPASS.2019.00042
https://doi.org/10.1109/IISWC.2018.8573527
https://doi.org/10.1109/IISWC.2018.8573527
https://doi.org/10.1109/IISWC.2018.8573527
https://doi.org/10.1109/IISWC.2018.8573527
https://doi.org/10.1109/SAMOS.2015.7363661
https://doi.org/10.1109/ACCESS.2020.3047259
https://doi.org/10.1145/3274783.3274840
https://doi.org/10.1145/3274783.3274840
https://doi.org/10.1145%2F3274783.3274840

	Hardware Execution Time Prediction for Neural Network Layers 

