elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Hardware Execution Time Prediction for Neural Network Layers

Osterwind, Adrian und Droste-Rehling, Julian und Vemparala, Manoj Rohit und Helms, Domenik (2022) Hardware Execution Time Prediction for Neural Network Layers. In: Workshops of ECML PKDD 2022, Seiten 582-593. Springer Nature Switzerland. ITEM 2022, 2022-10-19, Grenoble, Frankreich. doi: 10.1007/978-3-031-23618-1_39. ISBN 978-3-031-23617-4.

[img] PDF
889kB

Offizielle URL: https://link.springer.com/chapter/10.1007/978-3-031-23618-1_39

Kurzfassung

Abstract. We present an estimation methodology, accurately predicting the execution time for a given embedded Artificial Intelligence (AI) accelerator and a neural network (NN) under analysis. The timing prediction is implemented as a python library called Model of Neural Network Execution Time (MONNET) and is able to perform its predictions analyzing the Keras description of an NN under test within milliseconds. This enables several techniques to design NNs for embedded hardware. Designers can avoid training networks which could be functionally sufficient but will likely fail the timing requirements. The technique can also be included into automated network architecture search algorithms, enabling exact hardware execution times to become one contributor to the search’s target function. In order to perform precise estimations for a target hardware, each new hardware needs to undergo an initial automatic characterization process, using tens of thousands of different small NNs. This process may need several days, depending on the hardware. We tested our methodology for the Intel Neural Compute Stick 2, where we could achieve an root mean squared percentage error (RMSPE) below 21 % for a large range of industry relevant NNs from vision processing.

elib-URL des Eintrags:https://elib.dlr.de/188922/
Dokumentart:Konferenzbeitrag (Vortrag)
Zusätzliche Informationen:Acknowledgment This publication was created as part of the research project KI Delta Learning (project number: 19A19013K) funded by the Federal Ministry for Economic Affairs and Energy (BMWi) on the basis of a decision by the German Bundestag. The publication was published by Springer AG
Titel:Hardware Execution Time Prediction for Neural Network Layers
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Osterwind, Adrianadrian.osterwind (at) dlr.dehttps://orcid.org/0000-0002-0752-8698NICHT SPEZIFIZIERT
Droste-Rehling, JulianSiemens AG (Bremen)NICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Vemparala, Manoj RohitBMW AGNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Helms, Domenikdomenik.helms (at) dlr.dehttps://orcid.org/0000-0001-7326-200XNICHT SPEZIFIZIERT
Datum:2022
Erschienen in:Workshops of ECML PKDD 2022
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1007/978-3-031-23618-1_39
Seitenbereich:Seiten 582-593
Verlag:Springer Nature Switzerland
Name der Reihe:Machine Learning and Principles and Practice of Knowledge Discovery in Databases
ISBN:978-3-031-23617-4
Status:veröffentlicht
Stichwörter:Execution time · Prediction · Neural Networks · Analytical Model.
Veranstaltungstitel:ITEM 2022
Veranstaltungsort:Grenoble, Frankreich
Veranstaltungsart:Workshop
Veranstaltungsdatum:19 Oktober 2022
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):V - keine Zuordnung
Standort: Oldenburg
Institute & Einrichtungen:Institut für Systems Engineering für zukünftige Mobilität > System Evolution and Operation
Hinterlegt von: Osterwind, Adrian
Hinterlegt am:25 Okt 2022 11:46
Letzte Änderung:24 Apr 2024 20:50

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.